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Hard Bond

Soft Bond

Honeycomb

ESM 1000

ESM i001

ESM 1002

ESM 1020

DEFINITIONS

Phenolic bond, HT-424 or equivalent.

RTV-60 Silicone Adhesive or equivalent.

Unless otherwise specified, refers to Hexcel HRP-1/4-
GF-12-5.5.

General family of Elastomeric Shield Materials produced by
GE-RSD.

53 lb/ft 3 blend of ESM 1000 in Honeycomb, Hexcel HRP-1/4-

GF-12-5.5.

45 lb/ft 3 blend of ESM 1000 in Honeycomb, Hexcel HRP-1/4-

GF-12-5.5. (Formerly designated ESM 1001A)

20 lb/ft 3 blend of ESM 1000 in Honeycomb, Hexcel HRP-1/4-

GF-12-5.5, formulated to permit antenna transmission before

and after exposure to heat flux.
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I. INTRODUCTION

Rapidly developing interest and experimentation on the General Electric ESM 1000

Series of ablation materials has led to a considerable amount of test data. This

document was prepared by General Electric Re-entry Systems Department (GE-

RSD) to accumulate this data for evaluation and use. It summarizes the testing

and evaluation activities conducted over the last six months. Most of the work has

been performed in connection with manned space flight applications and the Apollo

Command Module in particular

Subjects which are discussed herein are as follows:

(1) Data from in-house work with ESM

(2) Data from Flight tests of ESM

(3) Data from the October-November 1962 NASA/MSC evaluation of ESM

(4) Data from the December 1962-January 1963 NAA evaluation of ESM

(5) Other related developments involving ESM

(6) Advanced ESM concepts

(7) Planned and funded work with ESM within GE

(8) Present Apollo/GE/ESM design concept

(9) Suggested program for further Apollo shield development

The results of the current study on the design of an ESM 1000 thermal shield for

the Apollo Command Module are included to illustrate the tremendous potential of

this material. The ESM material can be fabricated into a simple monolithic shield

having outstanding thermal characteristics and mechanical properties that are

both superior and unique.

1-1



Among the advantagesthat accrue to a thermal shield fabricated of ESM are the

following:

(1)

(2}

Excellent mechanical compatibility over a wide temperature range.

Simplicity of manufacture, leading to low cost of development and
fabrication.

(3} Resistance to service damage that might occur during flight or prior
to launch.

(4) Resistance to micrometeorite damage.

(5} Ease of repair.

(6) Resistance to ground environmental factors including humidity, thermal

cycling, erosion, fungus, vibration, shock, and aging.

(7} Excellent resistance to radiation and other factors of space environment.

(8) Density variability over a wide range permitting tailoring to a specific

requirement.

(9} High backface temperature permissible allowing full use of high tem-

perature properties of substructure.

(10) High heat of degradation, leading to an efficient low weight shield.

There is a firm conviction within GE-RSD that a unique material is at hand and should

be carefully evaluated because of its vastly superior mechanical properties and re-

sultant high reliability.

Thus, the purpose of this report is to accumulate for our own information, the data

available from these many varied material evaluations. Based on this information,

we can recommend specific design and development steps. We respectfully offer

this information to the Manned Spacecraft Center and its contractors who have a

need to know. The help from both NASA and NAA in "feeding back" ESM test results

for accumulation into this report is gratefully acknowledged.
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II. HISTORY

Late in 1961, General Electric interest in ablation materials exhibiting elastic

characteristics of large magnitude prompted investigation into various silicone

rubbers for such material bases. Subsequent development and testing evolved

blends that offered exceptional heat of ablation at relatively low fluxes (10-100

Btu/ft2-sec). Char strength additives and other improvements were incorporated,

and by mid 1962, this material was suggested as a thermal shield possibility for

the Apollo re-entry vehicle. A presentation at NASA Houston on August 24, 1962,

suggested this in the light of desirable characteristics such as large monolithic

construction and lessened shield weight.

The concept in August 1962 was necessarily based on the limited material design

characteristics obtained to date. Consequently, a more comprehensive assess-

ment program of the GE Elastomer (1000 Series} and several other materials was

undertaken by NASA Houston. Laboratory evaluations were conducted at Langley

and Plasmadyne; materials were flown on the MA-8 vehicle for recovery, and

General Electric flew patches of ESM 1001 on a ballistic re-entry vehicle re-

covered in the Pacific. At a higher flux level (about 900 Btu/ft2-sec), these

various materials were tested in the General Electric Space Sciences Laboratory;

micrometeorite tests were conducted by Ames and, at higher velocities, were

attempted by GE. These last-mentioned GE micrometeorite impact tests did

not meet desired specifications, leading to further development of this facility

which is discussed later in this report.

As a result of the above October,November 1962 assessment by NASA, North

American was asked to undertake a program to obtain more complete material

2-1



design information on a few of the screenedmaterials; ESM 1000andothers.

Samplesof ESM 1002(a specific blend at 45 lb/ft 3 density) were supplied to

NAA. General Electric was able to participate with NAA via engineering con-

sultation andtest recommendation with respect to our material. A section of

this document is devotedto the results of the NAA work with ESM, but data

is not available at submittal time andwill be provided later.

During the October 1962 to January 1963 period, General Electric has also con-

tinued an in-house program with the ESM series, and the continuing first-quarter

1963 effort is funded and underway.
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III. GE IN-HOUSE ESM INFORMATION

During the latter half of 1962, considerable data was obtained by the General Elec-

tric Re-entry Systems Department pertaining to the characteristics of ESM 1000

Series materials. The data is of three basic types:

(1) Thermal

(2} Mechanical

(3} Environmental

Most of this information is for ESM 1001, a particular blend in 1/4-inch honeycomb

at 53 lb/ft 3 density. Some information at densities as high as 77 lb/ft 3 is on hand.

Due to the interest in lower densities for afterbody protection, a small amount of

data is already available at 26 lb/ft 3 and, as discussed in Section IX, a first-step

basic program for the characteristics of 20 lb/ft 3 material is funded and under-

way.

A. THERMODYNAMIC DATA

1. SUMMARY OF ESM ABLATIVE CHARACTERISTICS

A significant amount of screening data on the ablative characteristics of the ESM

Series of heat protection system materials has been obtained in recent months by

GE-RSD. This data has been obtained in arc-driven test facilities and in the Malta

Rocket Exhaust Test Facility. Performance characteristics of these facilities are

described in Section VII. The primary objective of these tests was the qualitative

assessment of the ablative characteristics of the ESM Series of materials over a

sufficiently wide range of heating rate, shear, and enthalpy environmental condi-

tions to insure its adequate performance for the Apollo mission. It is recognized

formation to comprehensively evaluate the Apollo heat protection system and mar-

gin requirements.

3-1



A summary of the ablative performance of the ESM Series of materials is presented

in Figure III-1. The index of performance shown in the figure is that of heat of deg-

radation. The definition of this index is shown on the figure. This index has been

utilized by GE-RSD for several years for preliminary design purposes. Its use for

preliminary design stems from its definition of where the plastic decomposition

boundary is located, since this location, as a function of time (as well as the re-

lated Thermogravimetric Analysis results discussed later}, is necessary to real-

istically determine the shield insulation requirements. Further, the movement of

the decomposing interface is required by the structural engineer, since the strength

of the decomposed material is never used for structural purposes.

When establishing such an overall index of performance for application over the

wide variation in environment to which the Apollo Command Module is exposed, it

is necessary to obtain the variation of the value of the index parameter (heat of deg-

radation) with the key environmental parameters. For Apollo these are heat rate,

air enthalpy, aerodynamic shear, and exposure time.

It can be seen from Figure III-1 that the index parameter, heat of degradation, is

relatively invariant within the Apollo mission shear environment. * It would also

appear that the heat of degradation may be a function of material density; for ex-

ample, the heat of degradation shown in Figure III-1 is somewhat higher for the

class of density approaching 75-77 lbs/ft 3 than for the density of 45-53 lbs/ft 3.

Certain quality control advantages may be gained by limiting the extent of foaming

for certain portions of the vehicle, particularly the forward face. Since the in-

creased density material may have increased ablative performance, this increase

may offset the increase in insulation requirements in the face area. This choice

may be made after additional, controlled testing has been completed and weight

tradeoffs made.

In order to obtain information on the performance of the'ESM materials in extremely

severe environments, such as may arise from a localized heating perturbation such

*For the major portion of the Apollo Command Module.
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as an undershoot trajectory, several tests were conducted in the GE Malta

Rocket Exhaust Test Facility located at Ballston Spa, New York. In these series

of tests, fiat plates of ESM and phenolic nylon material were mounted side by side

on a blunted wedge (see Figure III-2).

The phenolic-nylon half of the face of the wedge serves as a reference ablation

surface. A static pressure tap and copper calorimeter slug are provided on the

phenolic-nylon side of each wedge face to measure the environmental conditions.

The test condition of the rocket exhaust facility are given in Section VII.

On each test run, the following procedure was employed. Each model was installed

so that the centerline of model and engine are aligned such that the nose of the model

is located approximately two inches downstream of the nozzle exit. The m__,2el is

then adjusted so as to give the proper angle of attack of each face (to obtain differ-

ent heating and shear condition}. Since the nozzle is designed to give a smooth flow,

considerable latitude exists in placing the model in the facility. The motor is then

started and brought to a stabilized condition before the motor is gimballed onto the

model. The models were then exposed for 4 - 5 seconds.

2. ABLATION CHARACTERISTICS -- ROCKET EXHAUST FACILITY

Photographs of typical pre- and post-test samples of ESM materials tested in the

GE Malta rocket exhaust are shown in Figures III-3 to III-10. Salient features are

noted on the figures. Note that in Figure I1-[-3 an instrumentation array of a sur-

face and subsurface calorimeter are shown, together with a pressure tap. This

instrumentation was used to check the state of flow (laminar or turbulent) and to

evaluate local heat rates and flow properties, i.e., pressure. In general, these

tests indicated material performance similar to that of phenolic-nylon material,

particularly at the higher densities and heat rates. Although the surface appears

quite rough, it is nonetheless of uniform roughness. Further, the more realistic

_.,_1, _1._ _Lvv_u_ _ U_LL_" _^a,,,_ u- a puL_,,_._, re-enLry mission surface.

3-3



3. AIR-ARC TEST RESULTS

The primary portion of air-arc test data shownin Figure III-1 has already been

reported to NASApersonnel and is availabie within General Electric in PIR form.

Figures III-11 to III-13 showtypical results from these tests.

a. Supersonic Arc Tunnel

Figure III-11 shows the backface temperature response of ESM material exposed

to low-level heating rate, long-time thermal environment. The material was

shaped into a trapezoidal plate configuration to fit the wall of the facility nozzle.

This flux level is representative of that on the Apollo aft section.

b. Hypersonic Arc Tunnel

Figure III-12 shows the backface temperature rise of ESM 1000. The specimen

was tested in the hypersonic arc tunnel at a cold wall calorimetric heat rate of

80 Btu/ft2-sec. and an approximate enthalpy ratio, hs/RT0, of 400. The speci-

men was 3/4-inch in diameter and fitted into a truncated conical holder to protect

from side heating. The ESM 1000 material was 0.577-inch thick corresponding to

2.25 lb/ft 2.

The results reported in Figure III-13 were obtained in the hypersonic arc tunnel

subjected to air at an enthalpy of approximately 13,600 Btu/lb with an enthalpy

ratio of 400. The air mass flow was 1.2 x 10 -3 lb/sec, expanded from a stagna-

tion pressure of approximately 1040 mm Hg. The heat transfer to a cold wall aver-

aged 120 Btu/ft2-sec, determined by calorimetric measurements. Models were

made in the form of 1-inch diameter cylinders with a 1/2-inch spherical radius on

the end. Each was bored with a 1/4-inch diameter hole which was filled with plugs

of the same material. Each insert was made to a length corresponding to a weight

of 4. 7 lb/ft 2. A thermocouple was attached to the back of each insert. The surface

3-4
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temperature reported in Figure III-13 was obtained using the two-color pyrometer.

The temperature shown on the figure is color temperature. Inasmuch as the chars

on the test specimens are essentially black, the values of the temperatures are very

nearly true.

4. THERMAL CONDUCTIVITY

Material thermal insulation characteristics are critical to the design of the heat

protection system, particularly in the regimes of low aerodynamic heating. The

conductivity information obtained to date is shown in Figure III-14, together with

values used for design purposes, see Section X. The test results indicate a signi-

ficant decrease in the thermal conductivity with decrease in density. The lowest

density specimen of ESM material available for conductivity evaluation was 26 !b/ft 3.

Tests are continuing on the lower density (20 lb/ft 3) formulation, but results are

not available for this report.

As shown in Section X, a significant weight saving exists by using the 20 lb/ft 3

formulation. Further, it allows the fabrication of a somewhat thicker, though

lighter, section, with subsequently improved handling and damage-resistant char-

acteristics.

5. THERMOGRAVIMETRIC ANALYSIS

Figure III-15 presents typical thermogravimetric (TGA) data for elastomeric ma-

terials. From this data, the temperature of decomposition which controls the con-

duction of heat towards the interior may be obtained. Experience has shown that

this temperature should be obtained at a W/Wo value of 0.95. These values are

also used in GE-REKAP analyses.
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B. MECHANICAL PROPERTIES

i. TENSILE PROPERTIES

a. Sample Preparation

Tensile specimens were cut from an 0.5-inch thickness of ESM 1001 using a spe-

cially fabricated cutting die. The dumbbell-type specimens had a cross-section of

1 inch by 1/2 inch and gauge length of 1-1/4 inch. They were fabricated with two

orientations, with-tape (WT) and across-tape (AT}, as determined by the charac-

teristics of the phenolic-glass honeycomb matrix.

b. Test Procedures

Specimens with both orientations were tested in tension at +75°F, -150°F, and

-250°F at 0.02-in./min crosshead travel. An Instron testing machine and a

Missimers air-circulating, liquid N2-coolant temperature chamber were em-

ployed, with recordings made on an Offner oscillograph. Strain measurements

were made with extensometers in both the axial and transverse directions at +75 °

and -50°F. Only axial strain measurements could be obtained at -150°F, and

strain measurements at -250°F could only be obtained on one specimen. Speci-

mens were brought to the test temperature and then soaked for a minimum of

twenty minutes to ensure constant temperature throughout the specimen.

c. Test Results

Figures III-16 through III-21 show the stress-strain curves resulting from the

testing of three specimens in each of two directions at +75 °, -50 °, and -150°F.

At -250°F, the following ultimate stress values were obtained:

With Tape Direction

950 psi

580 psi

730 psi

Across Tape Direction

700 psi

580 psi

830 psi

470 psi

• 380 psi

• (0.2% elongation at failure)
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Failure was defined as the first sudden drop-off of load due to partial or complete

separation at an interface or within either component of the honeycomb-elastomer

composite.

d. Discussion of Results

The pronounced anisotropic behavior of ESM 1001 due to the inherent characteris-

tics of the honeycomb matrix is probably a primary consideration in evaluating the

significance of reported properties. Because the honeycomb thickness does not

strain to a significant degree, we have a plane strain condition (on a macroscopic

scale). In this situation, we must consider the simultaneous changes in both direc-

tions. The importance of this behavior due to thermal loads is exemplified by the

thermal expansion data which shows contraction with increasing temperature in the

WT direction while the AT direction expands. Although no attempt is made here

to develop behavior mechanisms, it may be pointed out that the across tape (AT)

direction is the direction of least resistance to change as demonstrated by the ten-

sile behavior. In general, the elastomeric filler tends to expand with increasing

temperature at a greater rate than phenolic-glass. Therefore, the elastomer ex-

erts a force on the cell walls which tends to expand the area (equivalent to volume)

of the given cell. The geometry of a "theoretical" cell (assuming a six-sided ir-

regular polygon with its rigid sides hinged at their ends) is such that an initial in-

crease in the AT dimension (with corresponding decrease in the WT direction) will

actually increase the cell area up to approximately one percent. Figure III-22

shows the general effect on cell area of a change in either direction. Further evi-

dence of complex anisotropy is obtainable by considering the ratio of transverse-

to-axial strain at a given stress level in uniaxial tension. This ratio appears to

vary from the WT direction to the AT direction and within a single direction as

temperature changes.

No attempt to average the replicate test results has been attempted since the cause

of variation of data has not yet been determined to be eli.her _xperimental varla£ion

or behavioral variation due to possible nonhomogeneity of the composite material.
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2. THERMAL EXPANSION PROPERTIES

a. Sample Preparation

Specimens of ESM i001 were cut and machined to a 3" x 3" x 1-1/8" configuration

with square corners and parallel faces. The with-tape and across-tape dimensions

were equal (3 inches). One specimen of honeycomb without filler was tested.

b. Test Method

Changes in length with temperature were measured simultaneously in three direc-

tions. The relative motion of flat plates bearing against surfaces of the specimen

were monitored with motion transducers and extension rod systems. The tempera-

ture of the specimens was lowered to -260°F; then changes in lengths were meas-

ured while increasing the temperature at approximately l°F/min to +600°F.

c. Test Results

Figures III-23, 24, and 25 show the results obtained for three specimens of ESM

1001. Figure III-26 shows the behavior of one specimen of unfilled phenolic-glass

honeycomb (Hexcel HRP-1/4 inch-G. F.-12-5.5). The results are expressed as

curves of change in length/initial length versus temperature for each dimension

with a reference temperature of +70°F.

d. Discussion

The sudden break in the thermal expansion curve which occurs between -50 ° and

0°F requires discussion. This inflection in the curve is most probably due to

crystallization of the silicone-elastomer filler. The same phenomenon has been

noted previously in testing materials with the same base polymer. The previous

data shows this crystallization to occur at -50 ° to -40°F, a smaller temperature

range than shown in testing ESM 1001. Increasing the rate of temperature change

causes a transition zone to occur over an apparently broader temperature range;
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however, it may be assumed that this volumetric change of ESM 1001 (shrinkage

with decreasing temperature) occurs at -40 ° to -50°F. The crystallization of a

polymer does not necessarily cause a large variation in mechanical behavior. In

fact, the tensile behavior of ESM 1001 as reported here at -50°F is not significantly

different from behavior at +75°F. The transition of ESM 1001 to glassy behavior

(actually the transition of the silicone-elastomer filler) occurs well below -50°F,

most probably at about -100°F.

3. COMPRESSION PROPERTIES

This section describes the sample preparation, test, and results of the compression

properties of ESM 1001. This data is intended for preliminary design and proposal

purposes only. ESM 1001 has a density of 53 lb/ft 3. The ESM 1001A (45 lb/ft 3)

fabricated for NAA differs primarily in density. ESM 1001A was redesignated as

E SM 1002.

a. Test Conditions (Compression of 53 lb/ft 3 ESM 1001 formulation)

Specimen size: I" x i" x i".

Temperatures: 75°, 150 °, 250°, 600°F.

Directions: Two - With tape (also called "ribbon direction"), and Across

tape (also called "transverse direction").

Number of Specimens: Three per temperature per direction.

Test Equipment: Instron Testing Machine with circulating-air temperature

chamber.

InitialStrain Rate: 0.02 in/in/min (0.02 in/rain erosshead speed).

Strain Measurement: Crosshead travel motion synchronized with time

axis of X-Y recorder. (At loads up to I000 pounds

on the Instron Machine, crosshesd travel measure-

ment is equivalent to actual deflection of the test

specimen. )
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b. Test Results

(1) Figures III-27 through III-34 show individual stress-deflection curves

obtained for ESM 1001 specimens in compression for each temperature

and test direction.

(2) Figures III-35 and III-36 summarize the variations of ultimate stress,

stress at 25 percent deflection, and strain to failure (ultimate com-

pressive strain) with temperature and two orientations of honeycomb

matrix.

(3) Table III-1 lists the individual and average data calculated from the

stress-strain curves.

c. Discussion

From the compression results, ESM 1001 exhibits no major transition properties

over the temperature range of 75 ° to 600°F. A consistent decrease in stress at

both failure and 25 percent deflection is noted with increasing temperature for both

directions investigated (Figure III-35).

The most significant finding is the characterization of degree of anisotropy between

the two directions which is due to the inherent structure of the honeycomb matrix.

In comparing the general shapes of the stress-strain curves for any single tempera-

ture, it can be observed that the across-tape (AT) curve is smooth and characteris-

tic of rubber-like compression (approaching a finite volumetric compressibility).

The with-tape (WT) curve deviates from this behavior in that the shape is not smooth.

The initial portion of the WT curve exhibits a rigid or "still" behavior up to 5 to 15

percent deflection. The stress at 25 percent deflection is higher for the WT direc-

tion, but ultimate compressive stress and strain are greater for the AT direction.

Not yet completely understood are the mechanisms of strain and failure of the com-

posite material and the contribution of the elastomer to overall stress-strain be-

havior. Terminal fracture appears to be initiated by failure of the honeycomb matrix

in bending or in tension perpendicular to the direction of loading. Preliminary re-

sults in tension indicate that the major load bearing component is the honeycomb,

3-18
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TABLE III-1. COMPRESSION PROPERTIES OF ESM 1001

(53 LB/FT 3 DENSITY) AT A STRAIN RATE OF

0.02 IN/IN/MIN FOR 1" X 1" X 1" SPECIMENS

Direction

Specimen Test Temp. of Ult. Comp. Ult.

No. OF Loading* Stress, psi Deflection, %

Indiv.lAver. Indiv. I Aver.Tests I Tests

Aver. Comp.

Stress @ 25 %

Deflection, psi

1 75 WT 171 184 36 40 108

2 75 WT 155 33

3 75 WT 227 50

4 75 AT 370 381 47 48 92

5 75 AT 389 48

6 75 AT 384 49

7 150 WT !53 162 40 39 103

8 150 WT 179 46

9 150 WT 154 31

16 150 AT 319 296 53 52 73

17 150 AT 268 54

18 150 AT 300 48

10 250 WT 114 107 36 30 78

11 250 WT 104 24

12 250 WT 102 30

19 250 AT 227 259 52 49 76

20 250 AT 247 46

21 250 AT 302 49

13 600 WT 44 48 33 36 32

14 600 WT 50 38

15 600 WT 48 35

22 600 AT 178 163 56 55 27

23 600 AT 151 54

24 600 AT 159 54

*WT

AT

= with-tape direction (also called "ribbon direction")

= across-tape direction (also called "transverse direction" or "direction

perpendicular to ribbons")
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with only minor contribution of the filler. The same general behavior may be ex-

pected to hold under compressive loads.

For specific design purposes, future investigations should further clarify the com-

pression mechanismsquestioned aboveand should include evaluating the significance

of specimen size and shape characteristics with respect to heat shield design appli-

cations.

4. BOND-SHIELDMECHANICAL CHARACTERISTICS

Bond-shield preliminary mechanical properties are listed below. Although density

can be controlled over a wide range, these properties were determined on a 45 lb/ft 3

material in honeycomb, ESM 1001. In most cases, the reported values are minimum°

maximum results from three test samples.

Bond Line (Bond-Shield System)

Shear Strength

Ult Stress Ult Strain H/C Temp Substrate

(PSI) (%) Direction (°F) Material

1. 26 - 33 15 - 30 P 75 ° F A1

2. 31 - 49 16 - 20 T 75 ° F A1

3. 14 - 25 12 - 15 P 180 ° F A1

4. 14 - 26 12 - 16 T 180 ° F A1

5. 225 - 287 22 - 35 P -80 ° F A1

6. 50 - 105 25 - 38 T -80 ° F A1

7. 330 - 500+ m _ -200 ° F A1

8. 6.5 - 10.0 34 - 38 m +600 ° F A1

9. 94.5 - 105 13 - 19 m 74 ° F Be

10. 68 - 86 26 - 37 -- 200 ° F Be

11. 26 - 32 7 - 32 _ 400 ° F Be
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I

I
Tensile Strength

Ult Stress Temp Substrate

(PSI) (OF) Material

1. 35 - 58 74 ° F Be

2. 63 - 104 200 ° F Be

3. 26 - 32 400 ° F Be

I 5. SURFACE COATINGS

byEmissivity control of the shield application of coatings to give values of absorp-

I tivity, (_s, from 0.2 to 0.95 and emissivity, En from 0.6 to 0.9, depending upon

requirements:

I Surface Emissivity

Absorptivity, (_s = 0.75

I Emissivity, Cn = 0.94

i 200- TRANSVERSESTRAIN AXIAL STRAINII
180 ACROSS TAPE DIRECTION,,_II_.WlTH TAPE DIRECTION

A

I ,40- /

_,_o-_r,_, i__II _ ,oo- \_ 2_,

8o - kk _\\I
I II /I

I i-_ ,, ,v, , ,
I I I I

0 I I I

i -16 -14 -12 -I0 -8 -6 -4 -2 0 + 2 +4 +6 +8 +10 +12STRAIN, %

• lgure iii-i6. _1vl ±uul _o_ m/z_- uensity) Tension --

I with Tape Direction +75OF.
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C. VACUUM/THERMAL BEHAVIOR OF ESM 1001

1. WEIGHT AND DIMENSIONAL CHANGES

Ten specimens each of free foam and honeycomb composite ESM 1001 were aged

in vacuum at elevated temperature. Five specimens in the form of one inch cubes

were included in each cell. The final pressure attained was 5 x 10 -5 tort. This

pressure was maintained for fourteen days while heating at 250°F.

Following the exposure, the cells were immediately cut open and the following

measurements made: (1) weight loss, (2) dimensional change, (3} density change.

These results are reported in the accompanying Table III-2.

The dimensional changes were rechecked seven days after the first measurement.

These values remained essentially unchanged. We therefore feel that the change

is permanent and recovery will not occur in a reasonable time.

Preliminary conclusions based on this study are that properly post-cured honeycomb

ESM-1001 undergoes only minor chemical and physical changes under the conditions

used for aging.

TABLE III-2

EFFECT OF HEAT AND VACUUM ON ESM 1001

I

I
I

I

i L

Sample

ESM-1001 Honeycomb #1

Honeycomb #2

Honeycomb #3

Honeycomb #4

Honeycomb #5

Honeycomb #6

Honeycomb #7

Honeycomb #8

Honeycomb #9

Honeycomb #10

Weight
Loss %

0.83

0.95

0.81

0.90

0.88

0.93

0.78

1.10

1.00

0.72

% Change

in Length

-0.22

-1.61

-1.98

+0.54

-2.93

-3.14

-0.22

-1.31

-2.68

-0.55

% Change
in Width

+0.49

-0.29

-1.47

-2.10

-0.99

-0.49

-0.00

-1.22

-0.60

÷0.92

% Change

in Height

-2.74

-0.58

-0.10

-0.78

-1.75

-0.09

-1.77

-4.17

-0.09

-3.26

% Gain in

Density

1.77

1.53

2.00

1.30

4.93

2.94

1.20

5.95

2.42

2.18
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2. MECHANICAL PROPERTIES

Specimensof ESM1001honeycombcomposite and specimens of ESM 1001elastomer

foam without honeycombcore were vacuum agedat elevated temperature. The

specimenswere packagedwith desiccant material and subsequentlytested for com-

pressive behavior. Comparison with previously reported control specimen results

showedno significant deviations for the composite material from preaged behavior.

Figures III-35 and]11-36summarize this comparison of data. Results are tabulated

in Table III-3 and stress-strain curves are presented in Figures III-37 andm-38.

TABLE III-3

COMPRESSION PROPERTIES OF ESM 1001 {53 lb/ft 3) AFTER

VACUUM AGING (14 DAYS AT 5 x 10 -5 MM HG. AND 250°F)

Direction*

of Loading

WT

WT

WT

WT

WT

WT

AT

AT

AT

ESM 1001

Temp of

Test,

o F

75

75

75

150

150

150

75

75

75

Ult Stress

psi

Indiv Aver

Samples

235

182

177

198

132

545

Ult Strain,

%

Indiv Aver

Samples

41

44

40

42

31

5O

Compressive Stress

at 25% Deflection,

psi

Indiv Aver

120

96

100

132

108

156

5OO

610

528

30

32

32

54

49

46

117

85

122

98

95

70

105

108

88

Without Honeycomb

Core Material

(Elastomer Foam):

75

75

- 75

- 150

- 150

284

445

965

218 226

234

66

70

82

72

63 64

64

51

44

40

45

46 48

51

Weight Loss due to aging: ESM 1001 0.89%

Density Change (lb/ft3): ESM 1001 from 52.5 to 53.9 (2.7% increase)

Test Conditions: 1" x 1" x 1" specimens compressed at 0.02 "/"/min. (0.02 "/rain

crosshead travel

(* WT = With Tape Direction: AT = Across Tape Direction)
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Rate 0.02 in/in/min.
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Figure III-37.
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Figure III-38. ESM 1001 Elastomer Foam without Honeycomb Core

Material Test Temperature +150°F. Vacuum-Aged

(Density: before 42.5; after 45.3 lb/ft3).
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IV. ESM FLIGHT TEST DATA

Two ESM data sources other than laboratory tests are available:

(1) Flight on the MA-8 Recovery Vehicle.

(2) Flight on a ballistic re-entry vehicle, with recovery.

Both of these flights have provided confidence in the ESM material. These flight

tests were not instrumented except that the Mercury ESM test installation had

temperature-sensitive paints on the mounting panel.

A. ESM 1001 SAMPLE TEST ON MERCURY MA-8

An excellent opportunity was afforded for flight testing ESM 1001 on the Mercury

MA-8 flight. On this flight, a group of materials were tested by attachment to the

exterior of the beryllium shingles as shown in Figure IV-1. The prepared shingle

before flight is shown in Figure IV-2 and the recovered shingle in Figure IV-3.

The sample of ESM 1001 was 0. 090-inch thick as installed. Note the small square

patches of material at the corners of the sample. These were "intentional damage"

where the cracks were patched with ESM material to demonstrate the repair capa-

bilities of ESM. NASA-Houston reported the performance of the ESM 1001 ma-

terial as follows:

"There was no discernible thickness change, no char, and no weight loss. The

peak heating rate was 4.8-5.2 Btu/ft2-sec reached approximately 100 seconds

after the beginning of the 300-second re-entry heating cycle. The backface tem-

peratures at three locations on the beryllium shingle were (a) greater than 149°F

but less than 293°F, (b) less than 365°F, and (c) less than 428°F. (These quali-

tative values were determined by temperature-sensitive paints.)"

4-1



This sample test of the ESM 1001is of great use in evaluating the material per-

formance for spaceflight missions. Although re-entry fluxes as noted were lower

and shorter than for the Apollo re-entry, the space environment to which the ma-

terial was exposedis very similar and is an excellent test, particularly for the

cold-soak conditions. Sincethe MA-8 vehicle was in the dark for periods of about

40 minutes, the thin ESM 1001and the highly conductiveberyllium shingle must

have had sufficient time to cool to the minimum temperature possible. Based on

this test, as well as analysis, confidenceis generated in the capability of ESM

material to withstand the environmental conditions of the Apollo flight.

B. TEST OF ESM MATERIAL ON BALLISTIC RE-ENTRY VEHICLE

GE Elastomeric Shield Material (ESM 1001) was flown on an ICBM re-entry ve-

hicle. The test specimen, a 2" x 2" x 1/2" slab, was affixed to the aft area of

the R/V where it was exposed to a maximum flux rate of 60 Btu/ft2-sec, inte-

grated to 600 Btu/ft 2 (cold wall basis). No active instrumentation was mounted

in the specimen; water recovery was required for post-flight examination and

analysis. The specimen was recovered in two pieces which could be joined to-

gether to provide a nearly complete section. The breakup of the specimen was

a result of high loads resulting from high velocity water impact. Examination of

the specimen indicated no adverse effects of re-entry or impact upon the integ-

rity of the honeycomb and filler. Analysis of the ablative performance was quali-

tative only; however, no deleterious effects were observed, with no major degra-

dation of the material as a result of the thermal environment. Aerodynamic shear

loads were less than 1 lb/ft 2.
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Figure N - 2 .  The Beryllium Shingle Flown on the Mercury MA-8 Spacecraft 
with the Two Thermal Shield Materisls Attached. Tile Wider 
Specimen is ESM 1001. (The Narrow Specimen is GE Series 
500, also in the Phenolic-Fiberglass Honeycomb. ) 

t 
Irr 

Figure N - 3 .  Close-up View of the Upper End of the Recc rered Mercury MA-8 
Shingle. The Center and Lower Sections Contain the ESM 1001 
Material (Arrows). 
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Ve NASA EVALUATION PROGRAM

(OCTOBER-NOVEMBER 1962)

A. INTRODUCTION

This section has been prepared primarily to accumulate in one source for General

Electrie's consideration the data available from the initial material screening tests

conducted by NASA in October-November 1962. NASA has cooperatively supplied

most of this data and is perhaps more aware of interpretations than GE; only the

data concerning GE ESM 1001 is, of course, presented.

B. PLASMADYNE DATA

Mass loss and temperature response of ESM material obtained at Plasmadyne were

forwarded by NASA to GE. Test conditions and mass losses are shown in Table V-1.

TABLE V-I. PLASMADYNE TEST CONDITIONS

Model h s PT Po 1 P qs model time change in wt.

No. (Btu/lb) (atm) (atm) (atm) (Btu/ft2-sec) (rain) (grams)

10 10,400 .227 .043 .00414 232 0.75 5.4

11 10,348 .229 .042 .00414 231 1.0 7.05

106" 13,350 .069 .0123 .00122 101 3.0 23.7

115 13,330 .069 .0123 .0012 101 3.0 17.9

112 10, 190 .029 .0056 .00052 52 3.0 i2.3

113 10,005 .0286 .0054 .00052 51 4.2 18.4

* Phenolic nylon

Evaluation of the heat of degradation of Model No. 115, relative to the known per-

formanee of phenolic nylon for these conditions, was 9000 Btu/lb, similar to values

uU_J.V_U ill U m_, m_tulmlLl(¢_ £UJL" _IIIIIID.I" t_,_l_ (JUIIUlLmUII_,,
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C. LANGLEY TESTS OF MAo8 MATERIAL

Prior to flying test panels on the MA-8 Mercury vehicle, tests were conducted at

Langley Field on each of the various materials. Figures V-1 and V-2 show the

backface temperature data available to GE, namely, the Langley Reference PNM

(specimens 2, 3, and 4), the GE Low-Density 500, and the GE ESM 1001 elasto-

mer. All specimens were 5" x 5" bonded to beryllium, with thickness sized to

1/2 lb/ft 2 (ESM thickness was 0. 092 inch including bond).

Test condition was 2 Btu/ft2-sec followed by 6 Btu/ft2-sec intended to approximate

the expected MA-8 thermal pulse. There were two general criteria in this assess-

ment: (1) backface temperature rise characteristic and (2) physical erosion, crack-

ing, etc., to be judged from post-test visual inspection.

Discussion with NASA of the results led to the following conclusions:

(i) Of all materials (other manufacturers not specifically known), four

seemed satisfactory from a visual inspection point of view. Criteria

were erosion, cracks, loose material, "mud-cracking", etc. The

Langley PNM, the ESM, and the Series 500 were three of the four

materials judged satisfactory.

700

600

500

a

400

0.

300

200

100

SPECIMEN NO. 3. /

SPECIMEN NO. _

j "SL.P?W ILMEEvNE:: :AT IN G ~ 2 BTU/FT2_SEC

j
J ,,----- END OF PULSE

0 I I ] I I I I I

0 40 80 120 160 200 240 280 520

TIME, SECONDS

Figure V-1. Langley Research Center -- MA-8 Flight Material

5-2

I

I

I
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I



I

I

I
I
I

I

I

I
I

I
I

I
I

I

I
I

i

I

I

6OO

5OO

h
0
u._400
n-

"' 500
n

W
I--

2OO

I00

0
0

Figure V-2.

G.E,

Series 500-27

G° E.

Foamed Elastomer

(2)

SPECIMEN NO. la
(FOAMED ELASTOMER)

SPECIMEN NO. Ib
(SERIES 500)

--END OF PULSE

LOW LEVEL HEATING".'2 BTU/FT2-SEC

HIGH LEVEL HEATINGN 6 BTU/FT 2- SEC

40 80 120 160 200 240 280 320

TIME , SECONDS

General Electric -- Foamed Elastomer and Series 500

2 Btu/ft2-sec

Material gradually turned darker
in color. No burning observed
but temperature of beryllium sheet
showed continuous rise.

Material gradually turned darker
in color. No burning observed
but temperature of beryllium sheet
showed continuous rise.

6 Btu/ft2-sec

Material burned on surface
causing some removal of honey-
comb walls. There was no
blistering, separation or loss
of material from honeycomb.
Surface after test was rough
but regular.

Material burned on surface and
gradually turned white in color.
There was no blistering, sepa-
ration, or loss of material from
honeycomb.

Backface temperature rise was least of all for the GE Low-Density

500 (385 ° F after 200 seconds). The 1)NM was considered satisfac-

tory (430 ° after 200 seconds). The GE-ESM was also considered

satisfactory (520 ° after 200 seconds). The fourth material judged

satisfactory from a post-test inspection point of view was, of course,

another manufacturer's and the backface temperature for this mate-

rial is not known by GE°

It should be noted that it has been reported that none of the materials flown on the

MA-8 appeared to be as seriously eroded, cracked, etc., after the actual MA-8

flight as they were after the Langley test. This difference was attributed to oxygen

content or other characteristics of the laboratory test.
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D. MICROMETERORITE IMPACT TESTS AT AMES

Several thermal shield materials which were being considered by NASA in October

1962 were programmed for impact tests at the Ames Research Center. The results

on samples of ESM 1001 were qualitatively reviewed by NASA with General Electric.

ESM samples were 6" x 6" x 3/4" and weighed 3• 75 lb/ft2• They were bonded to

0• 15 stainless with a soft bond, RTV 60•

It was reported that even at the low temperature (-150°F), no "shattering" oc-

curred. A rather outstanding result seemed to be the retention of bond about the

penetrating hole. Generally, no bond separation other than that from the "petals"

of baekface material occurred•

Actual firing information is as follows:

I

I
I

I
I
I

I
I

Firing

A

B

C

D

Particle

(Grams)

• O36

•036

•036

• 036

Impact

Speed

(fps)

20,940

20,300

18,670

18,471

Impact

Angle

(Degrees)

90 °

=~90 °

=~90 °

= 45 °

T

(OF)

72 °

_75 °

-150 °

-127 ° F

Penetration

Diameter

Particle

Diameter

5

N• A•

No A,

Remarks

Best of lot, good ad-

hesion to honeycomb;

penetration localized

to cells; back plate

hollowed out, not pen-

etrated.

Example of classical

diag. failure, 4 petal•
Good adhesion of elas-

tomer to honeycomb

and baekplate up to

point of petaling out.

Similar to B but

petal penetration•

Particle impacted tar-

get at an angle of 45 ° ,

penetrated about 1/2

thickness of target.

I
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I

I
I

I
I

I
I
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The significance of these tests was (1) the ability of the ESM 1001 to retain non-

shattering elastic properties at very low temperatures and (2) the ability of the soft

bond to retain adhesion except at the actual penetration damage locale.

E. 900 BTU THERMAL TESTS AT GE

As part of the October-November assessment of possible materials for an alternate

Apollo shield, NASA had several materials tested at the General Electric Space

Sciences Laboratory. Tests were to be nominally at a flux of 900 Btu/ft 2. Com-

plete test results were submitted to NASA in the final report for this contract

(NAS 9-976) on November 16, 1962. Excerpted herein is the test data for the

ESM 1001 samples. The test facility was a water-cooled shroud which received

heated air from a vortex-stabilized graphite electric arc. The test specimen was

inserted concentrically within the shroud with only a few mils clearance.

Test specimens were of nominal one-inch diameter and a thickness defined by a

nominal one lb/ft 2. Each specimen was photographed after exposure. Backface

temperatures were measured. Specimens selected by NASA were weighed and

measured after exposure. Table V-2 presents the test conditions for the three

ESM 1001 specimen; Figures V-3, 4, and 5 present the backface temperature

time histories, each showing sharp temperature rises at about four seconds. This

data shows the almost-negligible backface temperature rise up to the time that the

char interface reaches the temperature-monitored slug.

TABLE V-2. TEST CONDITIONS- ESM 1001

NASA Stagnation Heat Gas

Model Press. Transfer Enthalpy

No. (Psia) (Btu/ft2-sec) (Btu/lb/RTo)

Run

NO.

2308

2313

F2 33 805 149

F4 43 940 173

_'Ll 42 _ou _

Model

Test

Time

(sec)

8

Length Wt.

Change Change

{inches) {Grams)

m i

I m
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F. GI_-MICROMETEORITE PROGRAM

A fixed price contract was awarded GE-RSD on 9 October 1962 to perform fifteen

tests on samples to be provided by NASA - Manned Space Center. A single parti-

cle of 0. 075 grams ±50 percent was to strike each sample with a velocity of 40,000

fps 315 percent at sample temperature vai-ying from -80 ° F to -200 ° F. The sam-

ples were 6" x 6" x 3/4" with three each of five materials supplied by the following:

(1) Avco

(2) McDonnell

(3) Emerson

(4) NASA - Langley

(5) GE-RSD

All work was to be completed by 30 October 1962. Between 24 September and

9 October, twelve firings of the high-explosive shaped-charge projector were con-

ducted to check out and calibrate the range. Velocity measurements obtained on

8 out of these 12 firings varied from 8,400 to 35,000 fps and particle mass obtained

on 2 of the 12 firings varied from 0.6 to 2. 3 grams. Three of these firings were

against GE-ESM 1001 targets at -80°F and -200 ° F.

From 11 October through 16 October, a total of 7 firings were made against the

thermal shield targets provided and were witnessed by a NASA-MSC observer.

Velocity measurements obtained on 6 of 7 firings varied from 6,300 to 28,000 fps

and particle mass obtained 3 of 7 firings varied from 0.02 to 0.8 grams. The tem-

peratures of the thermal shield targets were between -75 ° F and -258 ° F. Since

these velocities and particle sizes were outside specifications, it was decided to

stop firing against thermal shield targets and use steel targets until the specified

conditions could be met.

From 17 October through 3 November, a total of 22 firings were made. Velocity

measurements obtained on 21 of these firings varied from 9,900 to 35,800 fps and
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particle mass obtained ononly 2 out of 22 firings varied from 0.3 to 3.2 grams.

The reason for obtaining measurements of particle size on only 2 of these firings

wasdue to the failure of three x-ray tubes used in measuring particle size.

In summary, then, out of 41 firings, 5 were within velocity requirements and none

within particle mass specifications. This information was presented to NASA-MSC

on 4 November 1962.

Considering the development state-of-the-art of the shaped-charge projector, and

the instrumentation required, NASAdecided not to do any further tests until RSD

could assure repeatability in velocity andgreater assurance of controlling and

measuring particle size. RSDcould not give any reasonable time estimate as to

whenthe aboverequirements could be met. RSDthen recommendedto NASAthat

the contract be terminated at no cost to NASA. RSDagreed to absorb all costs to

date and to continue developmentof the facility. WhenRSDconsiders that it can

meet the contract requirements, negotiations could be reopened for further tests.

This was agreed to by NASA-MSC.

Although somevaluable qualitative information was obtainedfrom the firings which

had been made (total shattering of some materials andpenetration only of others},

development of the projector is required and i__sproceeding. This is reported in

Section VII.
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VI. NAA PROGRAM (DECEMBER 1962-JANUARY 1963)

A. INTRODUCTION

Following the NASA-MSC evaluation of several materials in October-November, 62,

North American entered a program to more fully evaluate recommended materials.

The General Electric ESM 1001 material was out of these.

On November 7, 1962, a meeting was held with NAA, at their request, wherein RSD

was asked to supply ESM samples in support of a material screening program for the

Apollo Command Module Alternate Shield. ESM-1002 with a density of 45+2 lbs/ft 3

was supplied in the following sizes and quantities:

Qty Size

29 12 vTx 12 vvx i t' thick

40 12 vvx 12 vvx 2 TTthick

12 6"x 6 vvx3 vvthick

The first delivery was made December 7, 1962, and the order was completed on

January 24, 1963. All deliveries were timely, based on receipt of the honeycomb

supplied by NAA. The 1 vvand 2 vvsamples were made in a 25" x 25 Tvmold and cut to

size after post-cure, providing a start for the scale-up process necessary to build

large structures like Apollo.

In addition to the above samples, the following bonded test specimens of ESM-1002

were provided to NAA:

Qty Size Purpose

20 3" x 3 vvx I vv Tensile adhesion

20 1" x 1 vvx . 05 vv Tensile shear

20 1vvx 1 vvx .125 ,v Tensile shear

20 1vvx 1 vvx . 25ff v Tensile shear

6-1



These initial specimenswere shipped onJanuary 14, 1963, andthe order was com-

pleted by January 24, 1963. All items were shipped in sufficient time to permit

test results to be available per the NAA schedule. All the above samples were

provided on a fixed-price basis.

B. DATA FROM THE NAA EVALUATION OF ESM 1001

Although some information has been obtained through, discussions with NAA, most

data was as yet single-point or otherwise preliminary. As this data becomes

available early in February 1963, it will be presented directly by NAA to NASA

and will also be available to GE-RSD. Therefore, this section will be revised

later. It should be noted that the preliminary data from the NAA work, while not

contained herein, has confirmed some characteristics (thermal conductivity, etc.)

also being obtained by GE.

C. TECHNICAL CONSULTATION WITH NAA

As part of the December-January material assessment program by NAA, General

Electric participated by providing engineering liaison in the thermodynamics, ma-

terials, and test areas. This was physically done by visits of NAA personnel to

GE at Philadelphia, by GE to NAA Downey, and by telephone and letter exchange.

Areas of Investigation in which GE has provided technical assistance to NAA were

ablative material test design, instrumentation, and data analysis. A typical problem

on which assistance was provided is shown below.

APOLLO ABLATION TESTS*

Objectives

Determine ablation characteristics under the following conditions:

Shear ('r)
(lb/ft 2)

Oto 1

3to 8

Heating Rate (_

(Btu/ft2sec)

_14OO

_1800
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Discussion

Several techniques have been pursued, including several different types of test

model and several different facilities. Malta Test Station can provide the high-flux,

high-shear conditions, using a fiat-faced cylindrical model; in fact, the low-shear

conditions also exist on this model, but over a very small area.

An alternate method of obtaining 3<r<8 was studied, using wedge models of various

wedge-angles (0°<5<25°). With this approach, the desired shear levels could be

attained, but not simultaneously with the heating rates of interest.

To achieve the low shears (0< _ <1) it was decided that the GE Space Sciences Lab-

oratory Supersonic Arc Tunnel would provide the most satisfactory simulation, of

the facilities investigated. This will n,-n, in_ -,_,,,-,,n,_ate wa!! shear _+.... t..+ low

heating rate. Simultaneous provision of r and _1 is not known to be feasible in any

facility. The test model in the Supersonic Arc Tunnel would be a fiat plate sub-

stituted for a portion of the wall in the diverging section of the nozzle.

The low shears could also be obtained in the GE-SSL Hypersonic Arc Tunnel, but

this facility is not presently adapted for accepting a test material as a portion of the

nozzle wall. It would, however, provide approximately the heating rate of the Super-

sonic Arc Tunnel.

The use of negative angles of attack of wedge models in the Malta rocket exhaust was

also checked (for low shear). Such large negative angles were found to be required

to get sufficiently low shear that separated flow was likely to result.

*Details of instrumentation and data analysis were included in these discussions,
1 _,uu_ are nut .... in Lhis ............iIICIUU_U
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GE-NAA VISITS AND CORRESPONDENCE

VISITS

a.

b.

W. Mertz (GE Thermodynamics) to NAA -- January 10, 11, 1963.

S. Allen and L. Laciny, NAA to GE on 18 Dec. 1962, to W. Mertz,

J. Glancey.

2. TECHNICAL CORRESPONDENCE

J. Bueche to L. Laciny on December 28, 1962, Recommended facilities and instru-

mentation for low-shear, high-heat-flux environment.
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VII. RELATED DEVELOPMENTS

Thus far, this study has reviewed the history of ESM material and discussed the

test data accumulated from various sources. General Electric's next planned work

with ESM as well as the present concept of an Apollo thermal shield designed to use

ESM 1000 will be discussed later in this document. However, before proceeding to

these next steps, this Section describes several signficant activities that either have

been related to the Apollo shield development to date, or use ESM for other applica-

tions. These are as follows:

(1) GE Hypervelocity Projector Facility Developments

(2) GE Thermal Test Facility Developments

(3) Other applications for which ESM series materials are being considered.

A. HYPERVELOCITY PROJECTOR FACILITY DEVELOPMENT

The Superpressure Studies Operation of the General Electric Space Sciences Lab-

oratory has been working for more than five years in various phases of hypervelocity

impact with the principal emphasis on the development of hypervelocity projectors.

The early work was with a type of gun using high explosive as a propellant. This gun,

which was originally developed in the 1957-58 period, was very competitive with

light gas guns of the same period when used to fire aluminum projectiles. The upper

velocity of this type of projector is limited by the detonation velocity of the explosive

and does not appear to be capable of velocity much in excess of 20,000 feet per sec-

ond. However, it has the advantage, of firing a preformed projectile, is relatively

inexpensive, and is useful for a great number of experiments that do not require

velocities in excess of its capabilities.

Approximately one year ago, as part of the General Electric Independent Research

Program, Superpressure Studies started working on projectors employing the hyper--

veiocity jet principle for achieving extremely high velocity. These projectors are
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somewhatsimilar in principle to the hypervelocity jet projectors that were developed

by the Ballistics Research Laboratories. These latter projectors have achieved a

velocity of approximately 79,000 feet per second and a beryllium projectile approx-

imately 5/8-inch long, 1/8-inch in diameter, and weighing approximately one-quarter

gram.

The BRL Hypervelocity Jet Projector achieves its outstanding performance by at-

tempting to match the detonation velocity of the high explosive to the velocity of

sound in the jet liner material. Superpressure Studies achieves comparable results

by using a matching section between the high explosive and the jet liner material.

This matching section seems to act as an impedance-matching device to couple more

of the energy of the explosive into the liner, thereby producing a higher velocity.

It should be noted that instrumenting tests on Hypervelocity Jet Projectors presents

some extremely difficult problems, some of which have been solved in only a partially

satisfactory manner. The seemingly simple problem of measuring velocity, for ex-

ample, presents some truly formidable problems. Superpressure Studies generally

uses three independent means of measuring velocity in order to achieve reasonable

confidence in the velocity results obtained. The first (and probably the most precise)

velocity measuring system is to allow the projectiles to pass through electrically

charged screens spaced at known distances apart, so as to produce electrical pulses

that can be recorded on some form of high speed timer. Superpressure Studies uses

two raster oscilloscope systems, capable of being read to an accuracy of better than

10 -7 seconds, for timing transits through the velocity screens. In addition, at least

three velocity screens are used for each shot. Unfortunately, a velocity screen is

incapable of distinguishing what passed through it. Thus there is always some pos-

sibility that the pulse produced by one velocity screen may not have been caused by

the same particle that caused the pulse from another velocity screen. For this rea-

son, one cannot fully trust velocity data obtained solely from velocity screens.

In order to resolve the possible ambiguity in velocity screen data, Superpressure

Studies normally attempts to observe the projectiles in flight by means of a high-speed
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camera. Unfortunately, very high-speed particles are usually surrounded by abla-

tion products and/or shock-heated gases and are therefore not visible using visible

light photography. However, the gaseous products surrounding the projectile are

visible and are relatively stable so measurements of their velocity are reasonably

good measurements of the projectile velocity. A rotating-mirror camera is gen-

erally used for this work, and the velocity results so obtained generally are in rea-

sonable agreement with the results obtained from velocity screens.

In addition to the velocity measurements previously discussed, it is customary to

try to observe the high-speed particles in flight by means of microflash x-ray. This

_._ t_,_.._,_nl_v_.jway presently known for determining the mass ,_ev.the fast particles.

Furthermore, if the time of functioning of the x-ray apparatus is precisely known,

the picture of the particle on the x-ray screen is a good measure of its velocity.

Unfortunately, the x-ray is a single-shot device and yields no information unless

triggered at precisely the correct time. Furthermore, the particles of interest are

near the limit of resolution of microflash x-ray equipment; therefore, they are ex-

tremely difficult to see on the x-ray plate. For this reason, it is extremely dif-

ficult to specify the mass of the fast particles to a very high degree of precision.

Many of these state-of-the-art problems became apparent during the micrometeorite

testing attempted for NASA in October 1962 as discussed in Section V. Since that

date, about 50 firings have been accomplished in a program to attain reproducibility

and measurability of these high-speed particles. The specific steps that have been

taken are:

(1)

(2)

(3)

(4)

Reduction of charge size and length from four inches to about two

inches. No significant velocity decrease but less blast and debris

are encouraging results.

Aluminum liners have been used rather than steel. This, too, has

resulted in improved performance.

Instrumentation via x-ray of the particle has been enhanced by the

use of a 4" x 20" film rather than 8" x 10" as previously used.

A further improvement in particle x-ray has been obtained by triggering

with an ionization probe at the bottom of the charge, rather than with

a velocity screen.
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Subject to the complications of measurementdiscussed in the previous paragraphs,

Superpressure Studieshas progressed to the point where it canachieve velocities

in excess of 40,000 feet per secondwith aluminum particle masses in the order of

0.1 gram with reasonableconsistency. It shouldbe noted that the shot-to-shot re-

producibility of this type of projector is not very goodat the present time. This is

now under intense investigation; someprogress has been made, and further improve-

ment is expectedin the near future.

In addition to its work on Hypervelocity Jet Projectors, Superpressure Studies has

done somework with small cylindrical shapedcharges using brittle cast iron liners.

These charges yield a small cloud of cast iron particles in the 10 to 100-micron size

range moving at a velocity of approximately 50,000 feet per second. This significant

development may offer particles which nearly match expectedmicrometeorites. To

date, impact on a sample is typified by a two-inch diameter cloud fired from a point

source at a range of eight inches.

B. GE EXPERIMENTAL CAPABILITIES FOR CONDUCTING THERMAL

SHIELD HEAT PROTECTION STUDIES

Since the inception of the ballistic missile programs of the United States Air Force,

the General Electric Company, and particularly the Space Sciences Laboratory, has

been engaged in the experimental evaluation of the performance of ablation materials

for thermal shield applications. Numerous types of electric-arc-heated test facilities

have been developed and used to provide the various environments in which such ma-

terials evaluation can be performed. Current practice in the industry and at SSL uses

arc-heated test configurations such as atmospheric free jets, wind tunnels, and other

specially designed test stands for specific environmental simulation. While detailed

descriptions of all such facilities are not contemplated here, it may be of interest to

describe briefly some of the latest simulation techniques and experimental studies

that are appropriate for thermal shield materials performance evaluation.
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I. COMBINED RADIATIVE-CONVECTIVE THERMAL TEST FACILITY

Currently there is being conducted at the Space Sciences Laboratory an experimental

program to study the effect on ablation materials of combined radiative and convec-

tive heating pulses. A tandem-Gerdien arc heater (developed at this laboratory) that

has been shown to be capable of generating extremely clean (100 ppm), very high

stagnation enthalpy air flows (hs/RTo > 400) was modified to further increase the

test gas enthalpy, thereby providing a source of appreciable radiant intensity for

model test purposes. To control the convective heat transfer from the high stagna-

tion enthalpy flow, a bleed arrangement is incorporated whereby the radiating gas

is diverted prior to its arrival at the model location.

Facility calibration, total calorimetry, and model testing with ablation materials

have been conducted at somewhat less than two atmospheres stagnation pressure

and radiant intensity values around 200 watts/cm 2. At these conditions, convec-

tive heating can be varied from 50 to approximately 2000 Btu/ft2-sec. Calorimetry

measurements to date indicate the total enthalpy (hs/RTo) at the entrance to the test

region to be in excess of 700, which represents escape velocity enthalpy simulation.

(Theoretical calculations of the energy transfer in this test unit confirms the above

figure. ) Sufficient data was obtained in the preliminary tests to indicate that the ex-

perimental technique is feasible and that meaningful test data can be measured.

Currently, calibration is being performed at the five-atm, pressure level prior to

the initiation of model testing. At these conditions, radiant intensity is being meas-

ured by a laboratory-developed sensor as well as by the use of thermopile techniques.

Preliminary measurements indicate increased intensity values.

All-important in the evaluation of ablation materials in experimental facilities is

an accurate knowledge of the test flow properties. Although heat transfer, pressure,

and enthalpy measurements have always been conducted in any test program, a more

detailed understanding of the flow is necessary, especially when attempting to ex-

trapolate test data to free-flight performance or correlate with theory. Presently
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GE is engagedin sucha study of the test flows in the SpaceSciences Laboratory

hypersonic arc tunnel. Measurements include the following: stagnation enthalpy

from total calorimetry at the throat of the nozzle, stagnationenthalpy profiles at

the nozzel exit (5" diameter) with an enthalpy probe, static pressure profiles across

the flow and along the nozzle axis, electron concentration and electron temperature,

gas species concentrations, total pressure profiles, rotational gas temperature, and

velocity determination -- all at the nozzle exit. Upon the completion of these studies,

the data will be compared with theoretical calculations of the chemically reacting

nozzle test flows. The net result of this effort will be to improve the capability to

evaluate material performance in well-characterized simulated environments of

arc-heated test facilities.

2. MALTA ROCKET EXHAUST TEST FACILITIES

A small rocket engine exhaust facility is available at the GE Malta test Station for

screening purposes (designated Pit No. 1 and a complementary larger development-

type facility (designated Pit No. 4).

Pit No. 1 employs a rocket motor with a five-inch exit diameter shockless nozzle,

designed to produce parallel exhaust flow at a Mach No. of about 2.45. The facility

is equipped with all the instrumentation and apparatus required to record the engine

and model operating conditions. Nominal operating conditions are as follows:

Oxygen-to- Fuel Ratio

Total Chamber Pressure

Model Stagnation Pressure

Total Enthalpy

Mach No.

Test Time

2.10

300 psia

110 psia

3000 Btu/lb

2.45

60 seconds

By judicious selection of model geometry and variation of engine operating conditions,

considerable variation in local test conditions can be obtained. For example, Figure

VII-1 shows local environmental conditions obtained on a blunted wedge, for laminar
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flow. Experience has shown, however, that above local 5 's of 9 ° that the flow be-

comes turbulent, thus affording evaluation of sizable test sections in this flow en-

vironment.

Pit No. 4 is a design similar to Pit No. 1 except that model sizes at least a factor

of four larger may be tested. Model stagnation pressure is 150 psia, enthalpy 3500,

and Mach No. _ 3.0.

Such facilities have proven extremely useful for evaluating fabrication techniques,

gaps, cut-outs, etc.

3. SPACE SCIENCE ARC-DRIVEN TEST FACILITY

Brief descriptions of the General Electric Space Sciences Laboratory material test

facilities are presented below.

a. Hypersonic Arc Tunnel (Operational since 1961)

A moderately high Mach number (to M = 8) low-density wind tunnel which uses

superheated air as the test gas. The gas is heated by an electric arc unit of the

Tandem-Gerdien or divided-flow type (Figure VII-2), the heat sensitive components

of which are water cooled to permit continuous operation over extended test periods.

The arc unit is supplied from a 500 kw d-c ballast-stabilized power source.

The test gas is heated in the arc column, collected in a central plenum, and expanded

through a sonic throat and conical nozzle to a low pressure test section. From here

the gas continues on through a diffuser and a two-stage 5500 cfm mechanical vacuum

pumping system. The test section is of the free jet type, the model being lowered

into position downstream and just ahead of the diffuser inlet (Figure Vn-3).

Two test stations are currently available. The normal station is at the 5" diameter

nozzle exit and is fully visible. The secondary station, at the 1.2" diameter nozzle

exit, is directly visible for surface temperature instrumentation only. Area ratios

are 1000 and 58 respectively.
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b. Tandem-Gerdien Free Jet (Operational since April 1962)

The Tandem-Gerdien Free Jet Arc Facility is equipped with an arc heater similar

to that used on the hypersonic arc tunnel. The primary difference is in the con-

figuration of the plenum hardware. The free jet is designed to provide highly heated

gas flows into ambient atmosphere. Since the gas flow does not reach a critical value,

it remains subsonic, but has a high free stream velocity due to its high temperature.

Special plenum-nozzle configurations are available which permit study of radiation

effects on test specimens, apart from convective heat transfer.

The diameter of the nozzle orifice limits the model size to 1/2". Models are de-

livered into the plasma by a pneumatically operated, water cooled sting.

c. Shroud Nozzle Air Arc (Operational since 1958)

A vortex-stabilized, axial-flow electric arc unit is employed to heat air (or other

gas) prior to its passage through a nozzle constricted by the test specimen (Figure

VII-4). With the inlet gas flow metered and regulated, the stagnation pressure is

controlled by maintaining the proper annular clearance between the test specimen

and the nozzle wall, even as the specimen surface recedes. Controls permit rapid

insertion of the specimen into test position after the hot flow has stabilized and with-

drawal after a pre-established test time.

d. Supersonic Arc Tunnel (Operational since 1958)

A supersonic (M = 4.8) low density wind tunnel similar in function and purpose to

the hypersonic arc tunnel and utilizing the same mechanical vacuum pumping system.

However, the arc heater is of the vortex-stabilized, axial-flow type, and the nozzle

exit diameter is 2.06" (area ratio of 89).

In addition to the standard conical nozzle configuration, a unique rectangular nozzle

is available for test of flat plate specimens in boundary layer flow (simulating glide

vehicle wing type surfaces), r-he specimens form the wails in the downstream por-

tion of the nozzle.
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e. Arc-Heated Aerothermodynamic Test Facilities

Table VII-1 summarizes the performance characteristics of the facilities described

in a. to d. above.

f. Arc Facilities Power Supply

All arc heated test facilities are d-c powered from a 500-kw variable ballast stabi-

lized rectifier system.

g. Arc Facilities Instrumentation

Oscillographs and Ink Recorders, multi-channel

Spectrographs, ultraviolet through visible

Pyrometers: Photo-electric, two-color

Visual- optical

Total radiation, Golay cell

Thermopiles

Calorimeters: Model, siug

Survey Rake

Total, heat balance

Thermocuples

Mass Flow Meters

Voltmeters and Ammeters

Pressure: Transducers

Manometers

McCleod

Pirani

Force Balance, three component

Langmuir Probes

Electron Beam
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h. Arc Facilities Test Specimen Environmental Conditioner

An apparatus for exposing arc facility test specimens to vacuum conditions approx-

imating that of near space in combination with radiant heat capable of bringing such

specimens to space equilibrium temperature. Material specimens can be heated to

500°F or any specified lower temperature in vacuo (to 10 -6 mmHg depending upon

outgassing characteristics of the material) and maintained at these conditions for

long periods of time prior to being subjected to re-entry testing in one of the arc

facilities. Six specimens may be conditioned simultaneously on an individual basis.

C. OTHER APPLICATIONS OF ESM SERIES THERMAL SHIELD MATEI_IAL

1. APOLLO COMMAND MODULE RADOME

GE-RSD submitted a proposal to NAA on 25 January 1963 for the design, fabrication,

and qualification testing of the Apollo Radome. This proposed design employed the

unique capabilities of the ESM material to obtain a radome fully compliant with the

procurement specification and at a weight only 74 percent of the target weight. A

t_pe of non-charring material, designated ESM 1020, was specified for this applica-

tion because of the requirement for antenna transmission before and after experi-

encing the re-entry heat flux. A preliminary sample was formulated during the

proposal period and tested for thermal and transmission properties. A test speci-

men after exposure to a representative heat flux is shown in Figure VII-1. Note

that very little crust or siliceous layer is formed on the surface by exposure to the

thermal environment, as desired for this specific application. Results of the trans-

mission testing were very close to the required performance indicating that no prob-

lems will be encountered in meeting all objectives with minor reformulation. This

demonstrates the unique flexibility and the ease of tailoring ESM material to a specific

design requirement.

The radome assembly consists of the ESM 1020 heat shield bonded to a fiberglass

substructure with the antenna assembly (furnished by NAA) foamed into place within
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3 the fiberglass assembly. The low-density ESM 1020 (20 lb/ft ) acts as an ablator- 

type lieat shield iziid at the siziiie time insuiates the s t ~ ~ ~ i u r e  and internal compo- 

nents from excessive heat. This design was achieved at a weight of 34.6 pounds 

versus the weight target of approximately 47 pounds. 

2. APOLLO SERVICE MODULE 

Discussions have been held with both design and thermodynamic personnel at NAA 

concerning the use of ESM ser ies  materials on the service module. Two specific 

uses are contemplated: 

(1) 

(2) 

protection against the exhaust of the attitude control nozzles and 

main engine protection of the service module aft face. 

Both of these uses are in the discussion phase only, but the results of the present 

NAA ESM 1002 assessment will be reviewed by Mr. P. Hogenson of NAA with service 

module use in mind. 

Figure VIT-5. Sample of ESM 1020-type material, 43 lb/ft3, after exposure in a 
hypersonic arc tunnel for 834 seconds at 6 Btu/ft2-sec. 
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VIII. ADVANCED ESM CONCEPTS

General Electric has a number of programs currently underway in the synthesis

of new ablation materials. After pioneering in the use of phenolic nylon as a

thermal protection material for re-entry vehicles, GE developed the Century

Series of ablators. More recently, the ESM i000 Series materials have been de-

veloped, and additional work with this series is planned.

The following discussion is limited to the ESM development work, which, to date,

has been concentrated on the ESM 1000 Series wherein the elastomeric filler ma-

terial is contained in and supported by fiberglass honeycomb. However, I,_L_

variations of this concept and other concepts are feasible and potentially are of

great value in reducing manufacturing problems or for specific applications. In

working with the material over an extended period from the standpoint of providing

even better materials for next-generation vehicles, many of these design varia-

tions have been identified and are being studied for further development. Further

study and development programs will be carried out as funding becomes available.

Plans have been made for some of these and can be implemented as soon as ap-

proved. It is planned to investigate the full scope of applications of this extremely

versatile material within the limits of GE-RSD capabilities.

A. UNREINFORCED FOAM

The simplest way to avoid problems associated with the honeycomb core is to elim-

inate the core or any other means of supporting the foam filler. Then a continuous

foam blanket can be poured, and a large part of manufacturing and quality control

problems and costs will be eliminated. A program has been planned to establish

the performance of this type material in various environments and to obtain design

data. This concept has such tremendous possibilities that it has been given high

priority for development.
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B. RANDOM FIBRE REINFORCED ESM

This concept, as shown in Figure VIII-l, is a compromise between the unreinforced

foam and the filled matrix type such as the honeycomb-supported ESM i000 Series.

It is expected to have most of the superior manufacturing advantages of the unsup-

ported foam while retaining most of the strength and shear resistance of the

honeycomb matrix. Variations composed of different types and percentages of

random fibres or of chopped cloth should be tested to establish material perform-

ance and design data.

C. CLOTH LAYERS IN FOAM

Cloth can be included in the foam in complete layers so as to obtain exact orienta-

tion and maximum strength. A sample of this type, shown in Figure VIII-2, was

fabricated of fiberglass cloth and maximum density (unfoamed) filler. This sample

exhibits all of the strength, toughness, and durability characteristic of a rubber

tire.

D. TAPE WOUND

A concept is shown in Figure VIII-3 that is designed to give maximum strength and

shear resistance. The tape is wound on a mandrel and at a slope to the shield sur-

face so that optimum fibre orientation results. The ESM filler compound is intro-

duced at the time of winding and may or may not be foamed afterwards. The

lengthwise fibres of the tape are oriented to resist circumferential shield stresses

while the crosswise fibres resist shears and radial stresses.

E. TWO LAYER MATRIX

Since the ESM has maximum insulation properties at low density while strength

and shear resistance are better at high density, a two-density approach is pro-

posed and is shown in Figure VIII-4. The high-density layer is sufficiently thick

that all degradation takes place in this layer. The low-density layer provides
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insulation to limit structure temperature to the maximum allowable. The specific

means of reinforcement to be used should be chosen for the particular design.

Honeycomb, random fibres, or oriented cloth could be used for the low-density

or the high-density or for both.

F. FILAMENT-WOUND LAYUP

This concept employs a criss-cross pattern filament winding of fiberglass or

other suitable material to form the re-inforcing matrix into which the filler ma-

terial will be foamed. An early test layup is shown in Figure VIII-5. Variations

may be obtained by the size and spacing of the fibres, by variation of the filler,

or by precoating the fibres with the ESM before winding. A variation of this in a

flat form is shown in Figure VIII-6.

G. ORIENTED FIBRES WITH CLOTH BACKING

Figure VIII-7 depicts a means of reinforcing the ESM foam filler by a mat of stiff

fibres oriented normal and woven into a cloth backing. In this concept, the fibres

provide reinforcement to the foam and resist shear forces, while the cloth back-

ing provides a continuous surface for hard bonding to structure. It is intended to

thus avoid some of the manufacturing and design problems associated with the use

of honeycomb as a reinforcement.

SOLID SURFACE . RANDOM FIBERS IN

COATING FOR SEALING _ / ESM FOAM

k,,, "-._.2_- .,._a.__._.: :-..:-_.".,_:.:. •
_." _m. \. "_ ,.-k-__.-_::..-"._._._'J :..-_'. •

• o _ • oo • " 0o - • o "; . *. - .

k

/"_5".V-C _: :_7-_ _T_-,: l,.'¢'- -" ''" " ."-="'-_. ¢" " :"''.--:--:,.:x ";':.F'. _'..-_.J_." _ ::-_.".-_______ •
I :.:---:---J:.: _..__..'V'-= ."_ _'.:

• .__ _"_'-_ "...1;.._--"_-_-..-":':_. • ._:-q_-._ ,

_ STRUCTURE

Figure VIII-1. Random Fibre Reinforced ESM.
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Figure VIII-2. Cloth Reinforced ESM. 

SOLID SURFACE COATING 
FOR SEALING 

CONTINUOUS FIBERGLASS TAPE 
SPIRALLY WOUND 

ESM FILLER 

- - OF SHIELD - 

Figure VIII-3. Tape-wound ESM Shield. 
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Figure VIII-6. Flat Filament Layup. 

STIFF BRUSH-LIKE FIBERS IN 
ESM FILLER FOAM 

\ 
SOLID SURFACE COATING 

/FOR SEALING 

STRUCTURE/ CLOTH BACK I NG ’ 

Figure VIII-7. Oriented Fibres with Cloth Backing. 
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IX. ESM DEVELOPMENT PLANS AND

GE-FUNDED PROGRAM

For the first half of calendar year 1963, the General Electric Re-entry Systems

Department has planned a required program aimed principally at extending the

adaptability range of the basic ESM 1000 heat shield material. By examining the

physical, density, and thermal modifications that can be achieved with slight for-

mulation changes, it is probable that the shield material may be adapted for a

broad range of re-entry conditions. It is imperative to continue to expand the

knowledge in this field through the investigation of new eiastomers, shield systems,

and scale-up applications. Further investigations are expected to also result in

new design applications for ESM. However, the first and most basic development

steps are as presented in the following tasks:

(1) Development and Evaluation of High-Density Elastomer

(2) Evaluation of Unsupported Elastomer

(3) Development and Evaluation of Low-Density Elastomer

(4) Parametric Study of Elastomeric/Filler Systems

(5) Scale-up of ESM 1002

Two of these, Tasks 3 and 5, with immediate relation to the Apollo Thermal Shield,

are partially funded by General Electric. All tasks could be undertaken or speeded

up if additional funding can be obtained.

TASK 1 DEVELOPMENT AND EVALUATION OF HIGH DENSITY

ELASTOMER IN HONEYCOMB

OBJECTIVES

(1) To define the maximum flux and shear level where ESM 1000

material will exhibit high performance capability. This will
define the limits of use on re-entry vehicles.
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(2)

(3)

To developthe specific formulation(s) and/or shield systems that
will perform best under the higher flux and shear levels.

To generate sufficient properties data on the developedformulation(s)
for a preliminary design.

BACKGROUND

Laboratory developmentactivities in 1962along with extensive ablation testing at

2500Btu/ft2-sec in the shroud arc and under high shear forces in Malta wedge

models are presently being evaluatedto meet objectives (1) and (2). This task will

complete the program by generating ablation data in the medium flux range (_ 1400

Btu/ft2-sec) andbasic mechanical properties. The ensuingthermal and stress

analysis will provide the necessary inputs for preliminary design and system trade-

off studies.

Subtask 1

From the results of formulation testing at 2500 Btu/ft2-sec, a series of samples

will be fabricated and tested in the shroud arc at a medium heat flux level (_ 1400

Btu/ft2-sec) representing station heating levels, other than stagnation, of typical

re-entry shields.

Sample configurations and test conditions to be defined.

Data to be reported:

AW, A L, and effective heat of ablation.

Subtask 2

(1)

(2)

(3)

Tensile -- two formulations tested in two honeycomb directions with

three replicates at -80°F, -65OF, -35°F, and R.T. = 48 samples.

Coefficient of Expansion -- two formulations in two honeycomb di-
rections with two replicates tested from -250°F to +250°F =16 samples.

Compression -- two formulations tested in two honeycomb directions

with three replicates at R. T., 160OF, and 250OF = 36 samples.
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Subtask 3

Preliminary thermal analysis to determine station-shield thicknesses for various

flux levels on a specific re-entry vehicle.

Subtask 4

Preliminary stress analysis to determine mechanical safety margins for prelimi-

nary design and trade-off studies on a specific re-entry vehicle.

I
I

I

TASK 2 EVALUATION OF UNSUPPORTED ELASTOMERS

OBJECTIVE

To qualify formulations of unsupported ESM 1000 (not in honeycomb) and generate

sufficient data for preliminary design.

I

I

I
I

I

I

i

BACKGROUND

Sufficient data is now being generated on ESM 1001 (a honeycomb-supported ma-

terial) for preliminary design. This basic formulation might have even greater

application opportunities if it were not in a honeycomb matrix. It would have a

lower density, conductivity, and consequently a lower backface temperature rise.

It would have a much greater strain capability for increased compatibility consid-

erations. It would be much simpler to manufacture especially over complex

shapes and surfaces. The critical qualification requirement parameter is its

ability to withstand ablation-shear-pressure re-entry conditions, and its tear

resistance.

Subtask 1

Ablation tests on trapezoidal specimens in the supersonic or hypersonic arc tunnel

at the 3-5 Btu/ft2-sec heating rate for applications on Apollo and similar vehicles.

I
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Subtask 2

Ablation tests in the supersonic or hypersonic arc tunnel at the 80-120 Btu/ft2-sec

heating rate typical of the Apollo vehicle or other similar applications.

Subtask 3

Ablation tests at 900 Btu/ft2-sec in the deep-throated shroud arc for re-entry

satellite stagnation point conditions.

Subtask 4

To demonstrate resistance to shear under ablating conditions. Samples 2" x 5" x

1/2" will be bonded to half of each side of a 9° P-N wedge model. The heat flux

will be approximately 400 Btu/ft2-sec and by controlling the angle of thermal im-

pingement the shear loads will be 1-5 lb/ft 2 on one side of the model and 50 lb/ft 2

on the other side. The P-N will be the control material.

Subtask 5

(1) Tensile -- test two formulations (densities) with three replicates at
-80OF, -65OF, -35OF and R.T. = 24 samples.

(2) Coefficient of Expansion -- test two formulations with two replicates

from -250OF to +250OF = 4 samples.

(3) Compression -- Test two formulations with three replicates at R. T.,

160OF and 250OF = 18 samples.

Subtask 6

Thermal Conductivity and Specific Heat -- Four samples each test over the tem-

perature range -200°F to +600°F.

Subtask 7

Laboratory investigation to define method of manufacturing and cutting large sheets

to controlled densities and thicknesses.
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Subtask 8

Preliminary thermal analysis to determine station-shield thicknesses for various

flux levels on a typical or specific re-entry vehicle.

Subtask 9

Preliminary stress analysis to determine mechanical safety margins for prelimi-

nary design and trade-off studies on a specific re-entry vehicle.

TASK 3 DEVELOPMENT AND EVALUATION OF LOW-DENSITY ESM 1000

OBJECTIVES

To A.... 1_,_ qualify, _d g_n_ra_ sll_fi_ient dat_ nn a low-density formulation (20

lb/ft 3) for preliminary design on Apollo and other low-flux re-entry vehicles.

BACKGROUND

Sufficient data is being generated on ESM 1001 and ESM 1002 for preliminary de-

sign. On major portions of re-entry vehicles such as Apollo (in low-flux areas)

the insulation considerations greatly outweigh the ablation considerations. For

such areas, the development and qualification of a low-density version of ESM 1000

could result in a significant weight saving due to improved insulation characteristics.

Subtask 1

Laboratory investigations to develop formulations, fabrication techniques, curing

conditions, catalyst and blowing agents combinations and concentrations, etc. to

produce a uniform low density material with physical integrity.

Subtask 2

Ab!a.U_'on tests on trapezoidal specimens in the supersonic or hypersonic arc tunnel

at the 3-5 Btu/ft -sec heating rate for applications on Apollo and similar vehicles.
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Subtask 3

Ablation tests in the supersonic or hypersonic arc tunnel at the 80-120 Btu/ft2-sec

heating rate typical of the Apollo vehicle or other similar applications.

Subtask 4

(1) Tensile -- two formulations tested in two honeycomb directions with

three replicates at -80°F, -65°F, -35°F, and R.T. = 48 samples.

(2) Coefficient of Expansion -- two formulations in two honeycomb direc-

tions with two replicates tested from -250°F = 8 samples.

(3) Compression -- two formulations tested in two honeycomb directions

with three replicates at R. T., 160°F, and 250OF = 36 samples.

Subtask 5

Thermal Conductivity and Specific Heat -- Four samples each tested over the temper-

ature range -200°F to +600°F.

Subtask 6

Preliminary thermal analysis to determine station-shield thicknesses for various

flux levels on a specific re-entry vehicle.

Subtask 7

Preliminary stress analysis to determine mechanical safety margins for prelimi-

nary design and trade-off studies on a specific re-entry vehicle.

TASK 4 PARAMETRIC STUDY OF ELASTOMER/FILLER SYSTEMS

OBJECTIVES

(1) To promote further understanding of the chemical factors and basic

mechanisms affecting performance of elastomer-filler shield systems.

(2) To develop and screen new elastomer-filler combinations specifically

designed for highly improved performance for thermal shields.
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BACKGROUND

In the first stages of the ESM 1000 development, a few commercially avail-

able mixtures were evaluated. Various fillers and additives were incorporated

into one of these resin systems to improve properties and lower the density

in a controlled manner. There is little basic understanding of why this

particular base resin and its filler performs well. Various basic modifica-

tions may perform better and be easier to fabricate. This task for the first

six months of 1963 will not generate preliminary design data but is basic to

future advances on elastomeric shield systems.

Subtask 1

Background study and analysis of chemical factors and behavior affecting perform-

ance.

Subtask 2

Laboratory studies and formulation development based on Subtask 1 and in associa-

tion with resin suppliers.

Subtask 3

Screening ablation and mechanica! tes_ng of fo ...... atlo..s from Subtask 2 "render

critical conditions comparable to those used for the current ESM 1000 material.

Specific tests to be defined.

Subtask 4

Analysis of results and definition of formulation with sufficient potential for addi-

tional effort and data generation.
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TASK 5 DEMONSTRATE AND EVALUATE SCALE-UP OF ESM 1002 IN

TYPICAL VEHICLE CONFIGURATION

OBJECTIVES

(1) To define the method of fabricating thermal shields of ESM 1002 to

typical vehicle configurations.

(2) To fabricate a half-scale thermal shield-structure of ESM 1002 and

qualify by thermal cycling, (approximately 4' diameter x 3' high).

(3) To assure that the scaled-up shield maintains the same properties

as the samples fabricated for data generation.

BACKGROUND

Although some thought and consideration has been given to the fabrication

process of full-scale thermal shields of ESM 1000 material, no integrated

effort has been made in this area. At this time only fiat specimens of

modest dimensions (up to 2' x 4' x 2") have been fabricated in the laboratory

and the Plastics Shop. A demonstration of fabrication methods for cured sur-

faces and its qualification is necessary for any design activity, and must be

completed before full-scale hardware can be manufactured.

Subtask 1

Definition of scale-up approach on half-scale, typical, conical configuration.

Subtask 2

Thermal cycle, instrumented, on shield-structure defined from Subtask 1.

Subtask 3

Selected mechanical and thermal property determinations on samples from scale-

up shield. To be defined.
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X. GE/ESM APOLLO SHIELD CONCEPT

A. INTRODUCTION

Throughout the previous Sections, the information at hand to support the present

ability to design and fabricate a monolithic shield for the Apollo Command Module

has been presented. This section will now discuss the following items:

(1) Thermal Analysis

(2) Structural Analysis

(3) Design Approaches

(4) Bond Systems Evaluation

(5) Suggested "Next-Step" Program

Based on the availability of more complete material data (compared with the last

General Electric assessment of an ESM shield for Apollo in August 1962), the

design approach continues to be to use the unique properties of ESM to obtain

a low-weight, minimum-cost, and highly reliable thermal shield for the Apollo

Command Module. The elastomeric characteristics of ESM lead to a struc-

turally compatible shield which is highly resistant to environmental extremes

and to damage attendant to normal handling and service life. Ease of repair

on the ground is a simple, reliable procedure since the base material it-

self is used. In-flight repair of damage due to micrometeorite impact or other

causes seems quite feasible.

The manufacturing problems involved in fabricating and handling a thermal shield

for an Apollo-size vehicle will also be greatly alleviated by the elastomeric prop-

erties of ESM. The objectives of the proposed fabrication techniques are to provide

a monolithic shield for the front surface of the Apollo and a minimum of large seg-

ments for the aft conical portion. Cutouts for access panels and antennas can be

i0-i



easily located and finalized after installation of the shield to the vehicle structure.

Design changescanbe tolerated without affecting basic shield assemblies or delivery

schedules. Studies have shownat least two methods of fabrication by which it is

possible to almost completely assemble the thermal shield before attachment to the

structure.

B. COMMAND MODULE THERMAL ANALYSIS AND MATERIAL REQUIREMENTS

1. METHODS OF ANALYSIS

In the course of its experience in the design, fabrication, and flight testing of ablation

systems, GE-RSD has developed several methods of evaluating the thermal response

of thermo-plastics, thermosetting plastics, elastomeric materials, and other ablating

materials when exposed to aerodynamic heating. One method employs a heat-of-

ablation or degradation technique in conjunction with a one-dimensional melting con-

duction program or a three-dimensional heat conduction program. This technique

was employed successfully on the RVX-1, RVX-2, Mk-3, Mk-6, and Discoverer

Programs. While this is a valid and well-established technique, GE has continued

to advance its technology by developing more comprehensive computer programs to

define material ablation: the Reaction Kinetics Analog Program and the Digital

Reaction Kinetics Program. These programs, which have been used on the recent

Skybolt and 201 Programs, calculate material degradation from equations based on

reaction kinetics theory and account for the dissipation of energy by the actual physical

modes involved. In addition, they calculate the effect on material performance of the

high enthalpy levels encountered in Apollo entry and relate the thickness of transient

char formation to the local environmental conditions. As a result, these programs

constitute an excellent method of determining material performance for all flight

regimes and extrapolating known performance from one flight regime to another.

The One-Dimensional Heat Conduction Solution With Melting Surface Program employs

a heat-of-ablation technique to calculate the material degradation and the associated

temperature distribution in the remaining virgin material and associated back-up

structure.
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The Digital and Analog Reaction Kinetics Programs calculate (1) the degradation

of a thermosetting plastic or silicone rubber to carbon-like char or silicone crust

and gases of pyrolysis, or (2) the degradation of a subliming plastic to gases of

pyrolysis with, in both cases, the associated temperature response of the surface

and of the virgin plastic substrate. The dissipation of the energy resulting from

aerodynamic heating is calculated for each of the following physical and chemical

modes:

(1) Blocking action of mass added to the boundary layer.

(2) Energy of decomposition.

(3) Sensible heat stored in the char layer and the uncharred material.

(4) Energy absorbed by gases liberated while flowing through porous char
la.ver.

le*, _ ....... 12 _ •_ _1
r_tLll_tt_Ll _fI'oni __ .e_ _ e ., .,_UII_LC_ UI CIlal °to) r_,ner_y ,ayer.

The boundary conditions are the aerodynamic heating and related viscous effects,

combined with the char-gas and plastic thermo-physical properties which are

determined by independent analytical or experimental techniques.

The heat of degradation approach was employed to determine the material degradation

reported. Since certain of thermo-physical properties of ESM materials, which are

required for REKAP (an evaluation of shield degradation utilizing reaction kinetics

theory), were not yet available at the time of this report, this program was not

employed.* For this specific material, these properties are being determined

experimentally, so that the reaction kinetics programs can be used for the future

detail design. The heat of _^ _*'^u_gr_u_t_,un of ESM material was estirc, ated from the test

data obtained by GE as discussed in the previous section. However, the effects of

char layer thickness on overall material performance for an Apollo environment

had been previously obtained for other similar materials, and these results were

used as a guide to the performance of ESM.

design approach utilized was that of an effective heat of degradation in an IBM 7090

* Such as gas product analysis and char-gas conductivity.
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computerized conductionsolution with surface melting. This solution requires:

(1) The effective heat of degradation.

(2) Condensedphasethermal conductivity specific heat and density.

(3) Effective conductiontemperature (obtainedfrom thermogravimetric
analysis).

The values of theseparameters havebeen developedin Section III-A.

(1)

(2)

(3)

They are:

Heat of degradation -- 8000 Btu/lb

Condensed phase thermal conductivity (Figure III-14, Section III-A).

Specific heat : .38 Btu/°F-lb

Density: 45 and 20 lb/ft 3

Effective conduction temperature: 1200°R

The Apollo spacecraft dimensions used for this evaluation are presented in Figure

X-l, along with identifying stations. These correspond directly to those specified

in the North American Aviation RFQ for Apollo Heat Shield Panels, Reference (1).

The Aerodynamic heating environment was also taken directly from Reference (1),

for the locations noted on Figure X-1. It was determined that trajectory 1 repre-

sented the most extreme condition from the standpoint of highest thermal load

combined with greatest re-entry time. Although the trajectories presented in

Reference (1) (and corresponding heat rates) were not shown to ground impact, an

estimate of this terminal phase of the trajectory was made to size insulation require-

ments. Further, a backup structure equivalent to 0. 040 inch of stainless steel was

used to complete the insulation evaluation.

2. RESULTS

An evaluation of thickness requirements was made for 45 lb/ft 3 ESM material on the

forward face (75 lb/ft 3 at the knuckle) and for both the 45 and 20 lb/ft 3 ESM material

on the afterbody. Degradation at several representative locations on the command

module are presented in Figure X-2. As shown in Figure III-1 of Section HI-A, it

does not appear that even limiting undershoot trajectories will result in significant
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Figure X-1. Apollo Configuration and Reference Point Locations
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changes in the heat of degradation of the ESM material.* Temperature distributions

through the ablative material at representative locations are presented in Figures

X-3, X-4, and X-5, including a description of ESM 20 lb/ft 3 gradients. These

results are presented for the thicknesses required to maintain the back face at 600°F.

Table X-1 provides a summary of thickness requirements for the command module

for limiting back face temperature conditions of 500 ° and 600°F respectively.

Table X-2 compares degradation for the three NAA trajectories listed in Reference (1).

3. COMMAND MODULE HEAT SHIELD WEIGHT

Figure X-6 presents the variation in command module heat protection system weight

with margin. Margin is defined in the figure. As shown in previous studies of re-

entry system ablative heat protection system reponse, system margin based on

degradation for satellite re-entry systems is approximately one-half the margin

based on thermal load.

Actual margins selected should reflect sufficient test points to provide statistical

evaluation of variation in thermal load and material response.

4. REFERENCE

North American Aviation, Inc., "Procurement Speciation -- Apollo Command

Module Heat Shield Ablative Panels." Specification MC 364-0001, 17 January 1962.

*While undershoot trajectories result in higher heating rates and shear forces

than the overshoot case (trajectoryl), the integrated thermal load is significantly

lower. Consequently, decreases in the heat of degradation are compensated to a

large degree by decreased in the thermal load.
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TABLE X-I. THICKNESS REQUIRED FOR APOLLO SHIELD,

MODULE (NO SAFETY FACTOR)

Material." ESM -- i000 series
0.040" Stainless steel structure

COMMAND,

p = 77 Ib/ft° Backface Temperature Limit

T L = 500OF T L = 600°F

Location Deg. Insul. Deg. & Ins. Insul.

1 1.79" 0.23" 2.02" 0.13"

p = 45 lb/ft 3

Location

1

2

4

8

13

17

Deg.

Backface Temperature Limit

TL = 500°F T L = 600OF
Insul. Deg. & Ins.

3.16"

0.94"

0.46"

0.32"

0.003"

0

Deg. & Ins.Insul.

0.18"

0.31"

0.39"

0.40"

0.387"

0.17"

3.34"

1.25"

0.85"

0.72"

0.39"

0.17"

0. i0"

0.17"

0.24"

0.25"

0.307"

0.14"

3.26"

1.11"

0.70"

0.57"

0.31"

0.14"

p = 20 lb/ft 3

Location

8

13

17

Deg.

0.75"

0.015"

0

Backface Temperature Limit
= 600OFT L = 500OF

Insul. Deg. & Ins.

0.36 1.11

0. 355 0.44

0.27 0.27

T L
Insul.

0.22

O. 295

0.23

Deg. & Ins.

0.97

0.37

0.23

If stainless steel is to be removed add the equivalent thermal thicknesses
of ESM.

PESM At

77 0.086"

45 0.14"

20 0.34"

These thicknesses are based on soak temperatures at impact.
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TABLE X-2. COMPARISON OF APOLLO SHIELD DEGRADATION

FOR SEVERAL NAA TRAJECTORIES

p = 45 lb/ft 3 Degradation

Location Trajectory 1 Trajectory 2 Trajectory 3

1

2

4

8

13

17

3.16

0.94

0.46

0.32

0.003

0

1.39"

0.28"

0.005"

0

2.15"

0.32"

O.001

0
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C. STRUCTURAL ANALYSIS

This analysis discusses the structural feasibility of ESM 1002 as a heat shield ma-

terial and summarizes the analysis done to date. Analyses were made for the

Apollo configuration as depicted in Figure X-7. Consideration was given to both

a flexible bond design and a design where the glass honeycomb is hard bonded to

the structure. The results of the analysis indicate that the basic problems in the

design will be with the internal interaction between the filler and the glass honey-

comb, the glass honeycomb cell bond, and edge effects. Further, it is concluded

that these effects would be minimized if the glass honeycomb were hard bonded to

the structure. However, thermal cycling has been completed successfully on spec-

imens employing soft bond. Relative reliability of the soft-bond system could be

established by building hard- and soft-bond specimens of adequate size and thermal

cycling them through the temperature extremes.

1. OVERALL SHIELD ANALYSIS

For the Apollo vehicle, the main frustum section was analyzed with a heat shield

material of ESM 1002 bonded to the structure with the filler material.

Material Properties:

ESM 1002

160OF

Ribbon Direction

c_ = 5 (10)-6 in/in -°F

E = 650 psi

v =0.5

Across Ribbon Direction

= 220 (10) -6 in/in -OF

E = 650 psi

v = 0.5
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-100°F

Ribbon Direction

= 9 (10)-6 in/in -OF

E = 2800 psi

v =0.5

Across Ribbon Direction

(_ = 295 (10) -6 in/in -OF

E = 2800 psi

v = 0.5

Substructure (Rene 41) (160°F and -100°F)

= 7.5 (10)-6 in/in -OF

E = 30 (10)6 psi

v = 0.33

Bond Properties:

160°F

E b = 100 psi

Gb = 33.3 psi

-100OF

E b = 400 psi

Gb = 133 psi

The frustum was analyzed for a 160°F soak condition and a -100°F soak condition

with the ribbon direction in both the meridional and circumferential direction for

both of the shield thicknesses. These temperature limitations were chosen since

preliminary property data was not available beyond these extremes. Wider limits

can, of course, be expected to indicate more problem areas. The ends were re-

strained from meridional movement in one case and were free to move in another.

The following combinations were analyzed:
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Run Temperature

1 -100°F

2 -100°F

3 160°F

4 160°F

5 -100°F

6 -100°F

7 160°F

8 160°F

9 -100°F

10 -100°F

11 160OF

12 160°F

13 -100°F

14 -100°F
1 _ I _,'_0_
J-_ J-UU

16 160°F

Shield Ribbon End

Thickness Direction Restraint

Maximum

Maximum

Maximum

Maximum

Maximum

Maximum

Maximum

Maximum

Minimum

Mimmum

Minimum

Mimmum

Minimum

Minimum

iviilllhiUn]

Minimum

Meridional Yes

Meridional No

Meridional Yes

Meridional No

Hoop Yes

Hoop No

Hoop Yes

Hoop No

Meridional Yes

Meridional No

Meridional Yes

Meridional No

Hoop Yes

Hoop No

Hoop Ye_

Hoop No

This analysis is a membrane analysis that takes into account the variation of

shield thickness along the length of the vehicle and is solved on the IBM 7090 com-

puter using a numerical integration technique. Typical results of the 160°F runs

are shown in Figures X-8 and X-9. The maximum bond and shield stresses are

tabulated as follows:

Maximum Stresses

(psi)

Meridional Bond Bond

Shield Circumferential Shear Normal

Run Stress Shield Stress Stress stress

1 86.0 180.0 4.1 -17.5

2 86.0 180.0 16.1 -15.0

3 - 6.2 - 14.6 0.3 1.4

4 - 6.2 - 14.6 3.8 1.3

5 185.0 86.0 5.7 - 9.0

6 183.0 86.0 16.2 - 6.0

7 - 15.0 - 6.3 0.5 0.7

t_ - 14.8 - 6.2 ' 7.9 0.5
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Run

Maximum Stresses

(psi) (Continued)

Meridional Bond Bond

Shield Circumferential Shear Normal

Stress Shield Stress Stress Stress

9 87.0 181.3 2.0 - 7.0

10 86.0 181.3 16.2 - 5.5

11 - 6.2 - 14.6 0.1 0.6

12 - 6.2 - 14.6 0.2 0.5

13 185.0 86.0 2.4 - 3.3

14 183.0 86.0 16.2 - 2.3

15 - 15.0 - 6.7 0.2 0.3

16 - 14.8 - 6.3 5.2 0.2

Th,__.._,_,trv.... _ev........__'_'_"'_+here is the low _--,_.,,.,,_strcsscs that are v_,_,_l,=d "- ,L_111 bll_:_ livAlb,v

bond. Run No. 7 indicates that with the ribbon in the hoop direction, with end re-

straint and maximum shield thickness, we have less than one psi tension and shear

in the bond at 160°F. Without an end restraint, Run No. 4, the ribbon in the me-

ridional direction will give the minimum shear stress at the free ends of four psi

at 160°F. When compared with other shield systems on a flexible bond this is

phenomenal.

It should be pointed out that this analysis was performed using preliminary prop-

erty data and the values used at low temperature are conservative. The shield

stresses shown are the average elastic stresses due to the thermal incompatibility

with the substructure and in no way reflect the total stress in the honeycomb and

the filler. The stresses shown would be greatly reduced if the substructure were

fiberglass rather than steel.

These results can be considered to be quantitative, in view of the assumptions

made and the material properties used. The shield material in question is in-

elastic and orthotropic in nature. Use of the available uniaxial test data and tl_e

assumed Poisson_s Ratio is, of course, incorrect for such a material.
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Nevertheless, the analysis does indicate that when considering ESM 1002as a

continuous shield material bondedwith a flexible bond, overall stress levels are

low. However, the internal stresses in the shield are higher and this is where

the design problems are to be found. Someof these problems may be:

(1) Adhesionof filler to the phenolic glass honeycomb.

(2) Adhesionof filler to the substructure.

(3) Adhesionof the phenolic glass honeycombcells.

(4) The interaction betweenfiller and phenolic glass cell.

Many of the aforementionedproblems canbe tested by thermal cycling the com-

posite material to the extreme environments. In some cases it would be advan-

tageousto thermal cycle the composite material before bonding to the substructure.

2. ANALYSIS OF HONEYCOMB CELL INTERNAL STRESSES

A detailed analysis was performed to determine the internal stresses in the phe-

nolic glass honeycomb and the filler. This was an analysis using a hard bond and

the individualproperties of the phenolic glass honeycomb and the fillermaterial.

These equations were derived for the condition away from the edge of the frustum

and set up such that there was strain and force compatibility. This is a membrane

solution. Two solutions are obtained from this analysis: (1) on the stresses in the

composite shield at temperature before it is made compatible with the substructure

and (2) the final stresses in the honeycomb, the bond, and the substructure at tem-

perature.

The properties used in this analysis were:

160°F

_Filler = 1000 10 -6 in/in -°F

EFiller = 117 psi

v = 0.4

i0-18
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-lO0°F

(rFiller = 1000 10 -6 in/in -OF

EFiller = 2000 psi

v = 0.4

Phenolic Glass Honeycomb:

1/4" hex-cell 0. 010" ribbon thickness

Substrdcture

%
Vg

Eg

_m

p
m

_m

Shield thickness

Radius

= 6 (10)-6 in/in -OF

= 0.25

= 3 (10)6 psi

= 30 (10)6 psi

= 0.3

= 7.5 (10)-6 in/in -OF

= 1.0 in.

= 45"

The above properties were assumed and are intentionally high. The results of

this analysis are shown below:

Stresses With Hard Bond

Soak

Temp.

160°F

-100°F

Filler Stress

(ESM 1002)

Hexcel

Bonded to Metal

- 18 psi

+562 psi

Shield Not

Bonded to Metal

- 18 psi

540 psi

Glass Hexcel

Stress

Hexcel

Bonded to Metal

404 psi

-992 psi

Shield Not

Bonded to Metal

661 psi

-20,532 psi

From these results, there are indications of possible trouble in tensile strength of

the filler material at -100°F, tensile strength of the adhesive holding the laminated

honeycomb together at -IO0°F, and the pU_blUlllLy ul lal,mg L.u honeycomb '---o_,a

10-19



peeling action at 160°F. At -100°F the filler material andthe honeycombad-

hesive must be able to withstand 562 psi tension. There could be the possibility

of local tensile failures of the filler or in the adhesionof the filler to the glass

honeycomb. This local separation is not expectedto be detrimental to the sys-

tem. Local separations relieve the thermal loads andthis type of failure would

not propagate.

The secondmodeof failure could be that the adhesiveholding the honeycombto-

gether might fail due to a biaxial tensile load of 562psi at -100°F. The best way

to test for this type of failure is to build a sample specimen of sufficient size to

eliminate the edgeeffects and reduce the temperature to -100°F.

The third modeof failure could be due to peeling failure of the honeycombad-

hesive at 160°F.

404 PSI __

18 PSI _=

PO I NT "A" -

S_
404 PSI

18PSI _ ,Xqt_j404 PSI

TTTTTTT_
18 PSi 404 PSi

Peeling action would tend to fail the honeycomb adhesive at Point "A". Therefore,

the indications are that the adhesive may fail at point "A" when at 160 and then

when going to the -100°F condition, the 562 psi tension could cause the remainder

of this adhesive to fail to give a complete separation of the honeycomb. Again, the

best way to test for this type of failure is to build specimens and cycle them to see

if it occurs.
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I

I It should be noted that the peeling loads at 160°F will be reduced from 661 psi

I tensile stress to the glass honeycomb to 404 psi tension if the glass honeycomb
is bonded to the metal substructure with a rigid adhesive. With a flexible bond

I system, this glass stress will be between 661 and 404 psi. For reliability, it ap-

pears that the use of a rigid bond would be advantageous.

I At a free edge there is a special problem due to the fact that the loads on the glass

i honeycomb are not symmetrical.

I 0 PSI ) _404 PSI

I 0 PSi 4. _ 18 PSi

""
0 PSI 404 PSI

I
I

I
I

I

I
I

I

I

This condition may cause separation of the honeycomb cell at the edge that will

relieve the load in the next cell and cause an unsymmetric load in the next cell.

This would tend to cause propagation of this failure. Again because of this mech-

anism, it is recommended that the glass honeycomb core be bonded to the metal

substructure with a rigid bond to prevent this type of propagation and increase the

reliability of the system.
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D. BOND SYSTEM EVALLIATION

Having completed the material screening program, and assuming the ESM 1002

material is still under consideration, the next logical step would be to perform a

preliminary design assessment and finalization of design and fabrication approach.

There are two basic approaches: (1) bonding pre-foamed ESM 1002 to the struc-

ture with a high temperature elastomeric bond, and (2) hard-bonding the honey-

comb to the structure (see Figure X-10).

i. ELASTOMERIC BOND

It is planned to preform or buy preformed honeycomb segments to the approximate

radius and to a pattern and size of a quarter segment of a conical section. After

proper priming etc, the honeycomb would be placed in a simple sheet female mold or

holding fixture onto the evenly distributed resin system. After foaming, the excess

material over the honeycomb surface would be removed and the shield system post-

cured for stabilization. After proper surface preparation of both the shield and

ELASTOMERIC BOND I I

I FILL H/C 1W/ABLATOR

i BOND TO I ISUBSTRUCTURE

COMPOSITE SHIELDSTRUCTURE

I
[

BOND UNFILLED H/C
TO SUBSTRUCTURE

FILL

W/ABLATOR

HARD BOND

I

FILL H/C

W/ABLATOR

I BOND TOSUBSTRUCTURE

COMPOSITE SHIELD l I COMPOSITE SHIELDSTRUCTURE STRUCTURE

Figure X-10. Possible Choices for Bonding Elastomeric

Thermal Shield to Substructure.
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structure, the segment would then be bonded to the substructure with the elasto-

meric bond material. The shield segments may be joined in at least two ways,

dependent upon the recommendations of stress and the results of current thermal

cycle tests of segments bonded to rigid, restricted molds.

In one case, the edges of the shield segments would not be filled in the foaming

process. When these segments were bonded to the structure they would be joined

by press-interlocking the segment edges to the adjacent segments. Consequently,

these narrow interlocking strips would be locally filled and foamed in place.

However, if analysis indicated otherwise, the fully filled segments would be tailored

to butt-fit the adjacent segment or to a controlled gap that then could be filled with

the unfoamed .... material ............. sel've as an au_lv_, .............. '- -snletu wmcn woulu -'-' ...... uumpru_lulu gap

sealant. These segment sections and gaps would be oriented so that they were not

parallel to the flow during re-entry. If necessary, the segment edges, ends, and

the strips surrounding cut-outs would be hard-bonded to the structure. The formu-

lations and density can be controlled over the vehicle surface, of course, to achieve

an optimized material designed for the specific re-entry conditions encountered

over the various body stations. In addition, the density of the foam in a specific

area can (1) be kept uniform through its thickness by allowing the foam to move in

both directions through the honeycomb cell openings or (2) by anchoring the honey-

comb to the female mold surface and allowing only one degree of freedom in the

foaming process. The resultant foam will decrease in density (and increase in

insulation prope_ies) towards the surface ultimately bonded to the structure.

Further, an overlay of heavily filled, non-foamed material may be metered onto

the shield surface to increase the ablation performance while maintaining beneath

the better insulation properties of the lower density foam. These and other varia-

tions may be made to achieve a specifically tailored shield system of the lowest

possible weight.
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In addition to controlling density of the base material in the honeycombmatrix, the

foaming andlow-temperature cure effect other advantages. This base material is

difficult to bondunder the best conditions since plastic materials contract during

cure. However, by foaming, a restricted pressure is exerted against the cell

walls which greatly increases adhesionand eliminates the shrinkage effect. By

foaming and curing at low temperatures (R. T. to 140°F), the foam is at a non-

stressed condition at a relatively low temperature (to further decrease the tendency

for the material to pull away from the cell walls at very low temperatures). This

is an attractive advantagewhencoupled with the extremely low glass transition

temperature of the elastomeric filler material.

2. HARD BOND

The alternate method of hard bondingthe honeycombto the structure with a rigid

adhesive, with or without glass scrim cloth reinforcement, also has two basic

approaches: (1) the honeycombbondedto the structure and then filled and foamed

and (2) the filled ESM 1002bondedto the structure. In both cases, the honeycomb

would be preformed to shape.

The honeycombcould be bondedto the structure rather simply with commercial

film adhesives etc., with interlocking joints or with controlled gaps. After suit-

able priming, etc., a process would have to be devised to fill the honeycombcells

with the elastomeric material. This might be rather difficult for the following

reasons. After mixing, the elastomeric materials have a goodbut definite pot

life at room temperature. The honeycombcells have to be filled uniformly from

the top surface without air entrapment at the base of the cell. The honeycomb

surface is convexand the shield wouldhave to be filled and foamed in segments

so that after filling, the material would not flow out of the cells on rotation. In

addition, the foam would decrease in density from the structure to the surface,

which is opposite to that desired. This process could conceivably work, however,

by developinga machine that would fill the honeycombsections connectedto an

automatic metering and mixing device to which the filling nozzle would be attached.
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The entire vehicle frustum could be on a rotating table and, as a section was filled

by the moveable nozzle, would be foamed and cured sufficiently by portable local

heat sources for frustum rotation. Although more complex, this approach could

be used, if necessary, to meet design requirements.

In the second approach, the material would be foamed in the honeycomb in the

simple female mold, as with the elastomeric bond system, with these variations.

A means would be defined to permit hard bonding to structure after core filling

such that adequate bond strength will be obtained. The following concepts have

been studied briefly and should be evaluated to fulfill this requirement.

(1) The simplest approach is to machine the bonding surface after filling

the honeycomb with foam. This is an operation of contouring the inner

surface of the filled honeycomb to exactly match the structure and will

be required in most cases either before or after foaming. By perform-

ing this after foaming, the edges of the honeycomb cells will be exposed

and can then be hard bonded to structure. This bond should develop a

large percentage of the strength obtained by bonding the core to structure

before filling, but tests must be run to establish design values and re-

peatability.

(2) One means of circumventing the filling problems is to preform fillets

on the core by dipping in bond and hardening on a very smooth surface

such as glass. Then when the core is filled, foaming can still take place

and be checked through both ends of the cells. After removing the excess

foam on the filletted side of the core and complete inspection, it can then

be hard bonded to the structure and should develop full-bond strength by

virtue of the preformed fillets. Another means of obtaining the same re-

sults is to dip the core (bond surface only) in a soluble material that can

be dissolved after foaming in the filler, so that a hard bond to the struc-

ture can still be used.

(3) T_his concept uses an unfilled fiberglass cloth as a medium to preform

fillets on the honeycomb core. The core is bonded to the fiberglass
cloth with a hard bond. Then the core is filled with the elastomeric

compound which is foamed into place. The loose weave of the cloth per-

mits air to escape from the cells and allows inspection after foaming

(as shown in Figure X-ll). The completed assembly is then hard bonded

to structures with the fiberglass cloth carrying the load between the core

and structure, thereby effeeting a continuous hard bond. These concepts

must be evaluated to establish design data before a final selection can

be made.
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To permit orderly evaluation of the bondingsystems and to allow valid system

tradeoffs, the Table X-3 has been constructed listing the advantagesand disad-

vantages of each approach. It is seenfrom the table that Method 3 combines the

advantagesof the first two methods with no attendant disadvantages but with cer-

tain unknowns as, for example, the resistance of the hard bonded shield to micro-

meteorites.

UNFILLED FIBERGLASS
_ (_LOTH AIR VENTING

f

ESM FILLER

HONEYCOMB CORE /
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Figure X-11. Prebonding of Unfilled Glass Cloth
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E. DESIGN APPROACH

The shield design presented herein has not been detailed because of lack of defini-

tion of the exact configuration, hatches, and antennas of the Apollo Command

Module. This next step can be quickly accomplished if further information be-

comes available. The design has thus far been kept general since a firm selection

of fabrication and bonding techniques has not been made. Two basically different

approaches have been studied based on the use of (1) a hard (phenolic resin) bond

or (2) a soft (elastomeric material) bond. These were described in more detail

previously under "Bond System Evaluation". For both the hard- and soft-bond

systems, it is planned that it would be possible to assemble the thermal shield

into the following major assemblies before attachment to the substructure:

(1) Forward face shield including most of knuckle.

(2) Two or more large assemblies for the aft conical sections

and upper portion of knuckle.

(3) Small units to be separately attached to removable doors

or panels.

The heat shield would be designed and fabricated of the ESM 1000 Series material,

a specific formulation which has been furnished to NAA for evaluation. Other

advanced concepts are described in Section VIII, but no tests have been made so

that no design data is available on these. The present ESM 1000 material (silicon-

base material in phenolic-fiberglass honeycomb) would be used since much data has

been generated and design can begin immediately. The only modifications to this

material would be minor changes such as those required to obtain a lower density

(20 lb/ft 3) which would be used on the conical section because the insulation re-

quirements are overriding. In addition, certain changes to alleviate manufacturing

problems would be evaluated such as the use of a larger-cell size honeycomb. This

is certain to be easier and cheaper to fabricate and would lead to lower densities

since the core is lighter. In addition, since the cell size restricts foaming action,

larger cells would lead to relief of foaming problems and also permit lower foam
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densities. In order to evaluate this concept, samples with larger cells must be

built and tested thermally to evaluate performance.

However, all further material refinement can be done during the development and

evaluation program and can run concurrently with design and analysis.

For application of the large assemblies to structure, the appropriate hard or soft

bond would be used. Means of obtaining the hard bond to structure after filling the

honeycomb cells are also discussed under section "Bond System Evaluation." The

joints remaining between the assemblies would then be filled with an ESM sealer

compound applied by a pressure feed technique similar to the channel groove seal-

ing procedure used on integral fuel tanks.

Cutouts in the shield assemblies, where required for hatches or sensors, can be

omitted or built undersize and trimmed to exact substructure fit after installation.

The simple techniques for cutting and trimming the ESM shield are of great im-

portance in avoiding manufacturing problems at this assembly stage. Repair

techniques are also available to preclude any schedule interruption in case of de-

sign changes or assembly errors. The trimmed shield edges would be sealed with

an ESM compound similar to RTV-60 to prevent absorption of moisture or other

deleterious environmental effects.

Shields over removable hatches or sensors can be attached to their individual

supports. Then to seal the joint to the main heat shieid, a simple ESM material

e_ .... _..... h_ used. This permits complete _i_ _,,,4thin the heat shield thick-

ness by a material compatible with the thermal shield and flexible over a very wide

temperature range.

Manufacturing techniques are available within the GE-RSD Plastics Shop where

the ESM 1002 test samples for NAA evaluation were fabricated and where the

thermal shield would be fabricated and assembled. A detailed manufacturing plan

can be completed upon final design definition and bond selection.
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F. SUGGESTED PROGRAM

The structural incompatibility of conventional plastic ablative heat protection sys-

tems with the load-carrying substrate under extreme temperature environments

has presented major problems on large-scale re-entry systems. These problems

are not readily apparent from small-scale test pieces, but appear in dramatic

fashion on large-scale (full-scale) ICBM and re-entry system tests. Consequently,

intense General Electric effort has been directed toward compatible ablative shield-

structure systems, such as that which the ESM material concept offers, to eliminate

fabrication and reliability problems associated with more conventional systems.

This final section of this study, a Suggested Program, has been prepared to pro-

vide all possible cooperation to both NASA and North American. It is hoped that

these suggestions may be helpful for further planning for an alternate Apollo

thermal shield. Of course, the planning presented is influenced by the concepts that

GE would consider applicable to the ESM material.

A suggested program would be to fabricate test specimens of the composite shield

and structure for each of the three methods discussed. These specimens should be

relatively large (30" x 40") and of the proper thicknesses and cycled through the en-

vironmental extremes to observe their behavior, as indicated in Figure X-12. The

goal of this program is, of course, to select the fabrication and bonding methods

which offer the best trade-off with material performance.
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ELASTOMERIC BOND

FABRICATE 30" x 40" x 1" CONTOUREDSPECIMENS
OF E_ ]002 IN H/C

OBTAIN F/G SUBSTRUCTURES (30"x40" CONTOURED)

BOND F/G SUBSTRUCTURESTO ESM SHIELDS WITH

ELASTOMERIC BOND.

FABRICATE JOINT TEST SAMPLES.

FABRICATE 3(]" x 40" x 1" CONTOURED SPECIMENS

OF E_M 1002 IN H/C

OBTAIN FIG SUBSTRUCTURES(30" x 40" CONTOURED)

BOND F/G SUBSTRUCTURESTO E_ SHIELDSWITH

HARD BOND.

FABRICATE JOINT TEST SAMPLES

OBTAIN F/G SUBSTRUCTURES(3(]" x 40" CONTOURED)

HARD BOND (HT424 OR EQUIVALENT) UNFILLED H/C
(1" THICK) TO SUBSTRUCTURES

FILL H/C WITH E_ 1002

FABRICATE JOINT TEST SAMPLES

PERFOI_,A'"BRAT''_'a,,,,v,,TESTS- n_,,(_AL,LEVELS

THERMAL-CYCLE: 12 HRS @-300°F AND 12 HRS

* 300°F (AMBIENT PRESSURE)(INCLUDING JOINT

TEST SAMPLE)

INSPECT, ANALYZE DATA AND REPORT RESULTS

TAKE 4-6" x 6" SAMPLES FROM ABOVE SPECIMEN

& SUBJECT TO MICROMETEORITE IMPACT

(-]00°F TO -300°F) IN ADDITION TO 4

CONTROL SAMPLES WITH NO PREVIOUS TEST

HISTORY

INSPECT, ANALYZE DATA AND REPORT RESULTS

I

l
MILESTONE I - DECISION POINT - NARROW CHOICE TO ONLY 1 OR AT MOST 2 METHODS, TRADE-OFF BASIS IS FABRICATION EASE AND QUALITY |

VERSUSMATERIAL CHARACTERISTICS J

THERMAL-CYCLE (VACUUM CONDITION)

7 DAYS _ -300°F AND 7 DAYS @ +300°F

(INCLUDING JOINT TEST SAMPLE)

INSPECT, ANALYZE DATA AND REPORT RESULTS

PERFORM ACCELERATED AGING AT HIGH HUMIDITY

PERFORM THERMAL AND ABLATION TESTS

INSPECT, ANALYZE DATA AND REPORT RESULTS I
I

MILESTONE 2 - DECISION POINT - MAKE FINAL SELECllON OF BOND METHOD ]

Figure X-12. Suggested Evaluation Program for Bond Evaluation
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In addition investigations and tests should be performed in the following areas:

(1) Shield repair - both ground and in-flight

(2) Sensor, window, and hatch Installations.

(3) Joint technique tests

(4) Sealants

(5) Emissivity coating - development, application, and qualification

The following material property data will be required of the bond method which is

finally selected:

(1) Physical

(a) Tensile - isothermal and transient

(b) Compression - including determination of glass transition tem-

perature

(c) Shear - of shield-bond system

(d) Tear resistance

(e) Stress relaxation

(f) Fatigue

(g) Impact

(h) Bi-axial

(2) Thermal

(a) Coefficient of expansion

(b) Thermal conductivity

(c) Specific heat

(d) T.G.A.

It is estimated that the suggested program up to Milestone 2 could be performed in a

three-month period. It is recommended that concurrently with these tests that a

preliminary design phase should be initiated to allow a rapid detailed design phase

and fabrication of a full-scale Apollo thermal shield to follow.
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